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Neuronal responses in primary visual cortex (V1) to optimally oriented high-contrast stimuli in the receptive
field (RF) center are suppressed by stimuli in the RF surround, but can be facilitated when the RF center is
stimulated at low contrast. The neural circuits and mechanisms for surround modulation are still unknown.
We previously proposed that topdown feedback connections mediate suppression from the “far” surround,
while “near’ surround suppression is mediated primarily by horizontal connections. We implemented this
idea in a recurrent network model of V1. A model assumption needed to account for the contrast-dependent
sign of surround modulation is a response asymmetry between excitation and inhibition; accordingly,
inhibition, but not excitation, is silent for weak visual inputs to the RF center, and surround stimulation can
evoke facilitation. A prediction stemming from this same assumption is that surround suppression is weaker
for low than for high contrast stimuli in the RF center. Previous studies are inconsistent with this prediction.
Using single unit recordings in macaque V1, we confirm this model's prediction. Model simulations
demonstrate that our results can be reconciled with those from previous studies. We also performed a
systematic comparison of the experimentally measured surround suppression strength with predictions of
the model operated in different parameter regimes. We find that the original model, with strong horizontal
and no feedback excitation of local inhibitory neurons, can only partially account quantitatively for the
experimentally measured suppression. Strong direct feedback excitation of V1 inhibitory neurons is
necessary to account for the experimentally measured surround suppression strength.
A. Angelucci).
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Introduction

A major goal of vision research is to understand how neural
circuits compute the responses of cortical neurons. In the primary
visual cortex (V1), responses of neurons to optimally oriented, high
contrast stimuli inside the receptive field (RF) are suppressed by iso-
oriented stimuli in the RF surround (Allman et al., 1985; Blakemore
and Tobin, 1972; DeAngelis et al., 1994; Gilbert and Wiesel, 1990;
Nelson and Frost, 1978). Surround suppression may represent the
neural substrate for perceptual figure-ground and/or texture seg-
mentation (Knierim and van Essen, 1992; Lamme, 1995; Li, 1999;
Malik and Perona, 1990), or for detection of salient targets for
subsequent saccades (Petrov and McKee, 2006); alternatively, it may
reflect optimal coding of visual information (Rao and Ballard, 1999;
Schwartz and Simoncelli, 2001), or statistical inference operations in
the visual cortex (Friston, 2005; Harrison et al., 2007). The neural
circuits and mechanisms for surround suppression remain unknown.
Statistical models have been proposed that accurately describe the
interactions between the RF and surround of V1 neurons (e.g. the
difference, or ratio, of Gaussian models; Cavanaugh et al., 2002a;
Sceniak et al., 1999, 2001). However, these models, by virtue of their
design, can only hint at underlying mechanisms, and while they can
inter- and extrapolate from measured data, they do not offer the
predictions one can derive from mechanistic neuronal network
models. We have developed a network model for surround suppres-
sion in V1, which incorporates feedback connections from extrastriate
cortex, and can account for many experimental findings using only
one set of parameters (Schwabe et al., 2006). Feedback connections
are generally believed to serve attentional (Maunsell and Treue, 2006)
and other task-related top-downmodulations (Navalpakkam and Itti,
2007; Salinas, 2006; Schwabe and Obermayer, 2005), or to play a role
in perceptual learning (Li et al., 2008; Schäfer et al., 2007). However,
we (Angelucci and Bressloff, 2006) have recently proposed that these
connections, which have a much larger spatial scale (Angelucci et al.,
2002) and are much faster-conducting (Girard et al., 2001) than intra-
V1 horizontal connections, may also generate surroundmodulation in
V1 (Fig. 1a). In our model, feedback mediates the modulatory effects
of the “far” surround, which we define as the visual field region
beyond the spatial extent of V1 horizontal connections, while “near”
surround modulation is mediated by both feedback and horizontal
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Fig. 1. Presumptive anatomical substrates for the RF center and surround of V1 neurons, and the recurrent network model. (a) Diagram of the different components of the RF center
and surround of a typical V1 neuron: (i) the high-contrast summation RF (sRFhigh;white area inside dashed circle), and (ii) the low-contrast summation RF (sRFlow; area inside solid
black circle) are measured by presenting high- or low-contrast grating patches, respectively, of increasing radius, and defined as the grating's radius evoking the largest response
from the V1 cell (e.g. see left panels in Fig. 2); (iii) the “near” surround (light gray annulus) is the region between the sRFhigh and sRFlow; (iv) the far surround (dark gray annulus) is
the region outside the sRFlow. Feedforward connections (green) to V1 from the lateral geniculate nucleus (LGN) are commensurate with the sRFhigh of V1 neurons (Angelucci and
Sainsbury, 2006). Intra-areal V1 horizontal connections (red) are commensurate with the sRFlow, while extrastriate feedback connections (blue) to V1 are commensurate with the
full spatial scale of the center and surround field of V1 neurons (Angelucci et al., 2002). (b) Diagram of the architecture of the recurrent network model of center–surround
interactions proposed by Schwabe et al. (2006). Only the major afferent pathways that more directly affect the response of the center excitatory and inhibitory neurons are shown.
For the full network architecture see Schwabe et al. (2006). Different connection types are indicated as color-coded arrows (according to legends in panels a and b). Dashed boxes:
populations of excitatory (Exc) or inhibitory (Inh) V1 neurons in the RF center; filled gray boxes: population of excitatory neurons with RF centers positioned in the near and far
surround. EFF: excitatory neurons in other V1 layers sending feedforward afferents to Exc neurons in V1 layers 2/3. EFB: excitatory neurons in extrastriate cortex sending feedback
projections (blue arrows) to Exc neurons in V1. Note that here for simplicity we only depicted feedback neurons in the extrastriate cortex whose RF centers overlap the RF center of
V1 neurons. However, in the full model feedback neurons also lie in the near and far surround; importantly irrespective of their RF center location, any of these feedback neurons can
affect the response of V1 neurons in the center, near and far surround, because of the high anatomical divergence of their axons. Icons at the bottom: different components of the RF
center and surround (as in panel a), with orange areas indicating the components that are activated when each respective network module is active. (c)–(d) Contrast-dependence of
surround suppression strength predicted by the recurrent network model. Model simulation of the strength of surround suppression as a function of stimulus contrast. In (c), the
stimulus consisted of a large grating patch covering the RF center as well as the near and far surround, and suppression strength was measured as indicated in Fig. 3a. Note that
suppression strength increases with stimulus contrast. In (d), the stimulus consisted of a center grating fitted to the size of the cell's sRFhigh, whose contrast was systematically
varied; this was surrounded by an annular grating confined to the far surround of fixed high contrast (75%). Suppression strength was measured as indicated in Fig. 4a. Positive
values of suppression strength indicate response suppression, while negative values indicate response facilitation. Note that suppression strength increases with increasing contrast
of the grating in the RF center.
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connections (Schwabe et al., 2006) (Figs. 1a, b). Similar to a previous
model (Dragoi and Sur, 2000; Somers et al., 1998), ourmodel accounts
for suppression via intra-cortical inhibition.

Two important features characterize our model. First, the
assumption of feedback targeting exclusively excitatory, but not
inhibitory neurons (Fig. 1b), a constraint that was imposed by
experimental findings in rat visual cortex (Johnson and Burkhalter,
1996; Shao and Burkhalter, 1996); these were the only anatomical
data available at the time we generated our model (see Discussion).
Thus, in the model far surround suppression is generated by feedback
connections targeting excitatory neurons in the near surround, which
in turn send horizontal connections to local inhibitory neurons in the
RF center (Fig. 1b). Second, the assumption of a higher functional
threshold and response gain of inhibitory neurons, compared to
excitatory neurons; this feature is needed to account for the contrast-
dependence of surround modulation. Specifically, because of this
response asymmetry between excitation and inhibition in the model,
the high-threshold inhibitory neurons are silent for weak visual
inputs presented to the RF center (e.g. low contrast stimuli), and
stimulation of the near or far surround generates facilitation. Near
surround facilitation at low center stimulus contrast has been
observed experimentally (Polat et al., 1998; Sceniak et al., 1999).
Recently, we have also confirmed experimentally the model's
prediction of far surround facilitation at low center stimulus contrast
(Ichida et al., 2007). An additional prediction of the model, stemming
from the same assumption of response asymmetry between excita-
tion and inhibition, is the dependence of the strength of surround
suppression on the contrast of the stimulus presented to the RF center.
Specifically, at low center stimulus contrast, the strength of near or far
surround suppression is predicted to be weaker than at high contrast
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(Figs. 1c, d). Published data on the relationship between contrast and
surround suppression strength are contradictory and inconsistent
with our model's prediction, showing either no relationship between
contrast and suppression strength (Sceniak et al., 1999), or stronger
suppression for center stimuli of lower contrast (Cavanaugh et al.,
2002a; Levitt and Lund, 1997; Sadakane et al., 2006). Therefore, we
have re-examined this issue experimentally. Our electrophysiological
results are consistent with the model's prediction of weaker
suppression at low stimulus contrast, and can be reconciled with
apparently contradictory results from previous studies.

A second goal of this study was to investigate how well the model
can account quantitatively for the suppression strength seen in the
data. To this purpose, we systematically compared our data with the
predictions of our model operated in different parameter regimes. We
find that the original published model (Schwabe et al., 2006) can
account quantitatively for the far surround data, but cannot fully
account for the near surround data. The parameter regime that best
describes the data quantitatively includes stronger feedback excita-
tion of local inhibition than we assumed in the original model.
However, additional suppression needed in the model to account for
near surround data could also arise from surround suppression of
geniculate afferents, which is missing in the current version of our
model.

Materials and methods

Surgical preparation and recording

We recorded extracellularly in V1 of five anesthetized (sufentanil
citrate, 4–12 μg/kg/h) and paralyzed (vecuronium bromide, 0.1 μg/
kg/h) macaque monkeys (Macaca fascicularis). Animals were respi-
rated with a 30:70 mixture of O2 and N2O. The electrocardiogram was
continuously monitored, end tidal CO2 was maintained between 30
and 33 mm Hg, rectal temperature near 37 °C and blood oxygenation
near 100%. The pupils were dilated with tropical atropine and the
corneas protected with rigid gas-permeable contact lenses. The
locations of the foveas were plotted at the beginning of the
experiment and periodically thereafter. Supplementary lenses were
used to focus the eyes on the display screen.

Single unit recordings were made with tungsten microelectrodes
(4–6 MΩ; FHC, Bowdoin, ME) in the opercular region of V1. Spikes
were amplified, filtered, and sampled at 22 kHz by a dual processor G5
Power Macintosh computer running the custom software EXPO,
kindly donated to us by Dr. Peter Lennie. Spikes were displayed on a
monitor, and templates for discriminating spikes were constructed by
averaging multiple traces. The timing of waveforms that matched the
templates was recorded with an accuracy of 0.1 ms. All procedures
conformed to the guidelines of the University of Utah Institutional
Animal Care and Use Committee.

Visual stimuli and characterization of receptive fields and surround fields

Sinusoidal gratings of the same mean luminance as the back-
ground were generated by the same software and computer that
recorded spikes, and were displayed on a calibrated monitor (Sony
GDM-C520K) refreshed at 100 Hz of mean luminance ∼45.7 cd/m2, at
a viewing distance of 57 cm (at which the screen subtended a visual
angle of 28°). For each cell, we first determined the preferred
orientation, spatial and temporal frequency. Then, the diameter and
geometric center of theminimum response field (mRF) were carefully
located quantitatively using a grating patch of 0.1° radius. Using a
grating patch matched to the cell's mRF diameter, we generated a
contrast response function for each cell and used the individual cell
responses to tailor the contrast values for the remaining stimuli. High
contrast values were chosen so that neuronal responses did not
exceed 90% of response saturation for the cell (typically between 50%
and 80% contrast); low contrast values were generally chosen to be
those eliciting b50% of the maximum response in the cell's contrast-
response function, but still eliciting a reliable response (at least 2 SD
greater than the spontaneous firing rate; typically between 4% and
30%; the cell in Fig. 2c was one exception).

RF and surround size measured by the expanding patch method
We performed spatial summation measurements at high and low

contrast, using circular patches of drifting gratings of increasing radius
centered over the cell's mRF. The patch radius ranged from 0.1° to 14°
and consisted of 11 radii presented in random order within each block
of trials (0.1°, 0.2°, 0.4°, 0.8°, 1.2°, 1.6°, 2.5°, 5°, 7.5°, 10°, 14°). From
these patch-size tuning curves at high and low contrast we extracted
for each cell the patch radius at peak response. The radii at peak
response in the low- and high-contrast conditions are referred to as
the summation receptive fields at low (sRFlow) and high (sRFhigh)
contrast (see Fig. 1a). The latter were used to create the center and
annular surround stimuli used for the “expanding annulus method”
described in the text below.

Surround size measured by the expanding annulus method
In this experimental protocol, the RF center was stimulated with a

grating patch of optimal stimulus parameter for the recorded cell
fitted to the radius of the cell's sRFhigh; this was surrounded by an
annular grating with a fixed outer radius (14°) and an inner radius
whose size was systematically decreased from 12.5° to a size ≥ the
sRFlow of the cell (we used nine annulus inner radii). Thus, there was
always a blank annulus of the same luminance as the background
interposed between the center grating patch and the surround
annular grating, i.e. covering the near surround. For this stimulus,
we used the same two contrast values, high and low, as used for the
expanding patch method, with the contrast of the center and
surround gratings being controlled independently. We used three
different combinations of center and annulus contrast: high center
and high annulus contrast (HH), low center and high annulus contrast
(LH), and low center and low annulus contrast (LL). The center and
surround gratings had otherwise identical stimulus parameters
(orientation, drift direction, spatial phase, spatial and temporal
frequency).

Control conditions included a blank screen (of the same luminance
as the background) for a measure of spontaneous activity, a center-
alone condition for a baseline response, and a surround annulus-alone
condition to ensure that the surround stimulus alone did not drive a
response. For the latter measurement we used the surround annulus
with smallest inner radius (i.e. the widest surround annulus) that was
used to measure surround suppression in the center-plus-surround
condition.

Both annular and patch stimuli were presented randomly in a
block-wise fashion with a duration of 2 s and a 2 s inter-stimulus
interval. Each block was repeated 10 times and the responses across
blocks were averaged to calculate the mean firing rate for each
stimulus condition.

Data analysis

Statistical model fitting
Both the patch-size and annulus-size tuning data were fit with a

“thresholded” difference of Gaussian (t-DOG) model, as previously
described (Ichida et al., 2007). This is because, the t-DOG model,
unlike the more standard difference (or ratio) of Gaussian model
(DOG or ROG, respectively), captures well the far surround facilita-
tion. Briefly, the t-DOG model describes excitation and inhibition as
two Gaussian functions of identical spatial scales, with the inhibition
becoming effective after a threshold is crossed.

In order to compare ourmeasure of surround suppression with the
DOG-model-based quantification of surround suppression performed



Fig. 2. Patch-size and annulus size tuning curves for three example V1 cells showing weaker surround suppression at low contrast. (a–c, left) Responses (mean firing rate) of 3 V1
cells as a function of the radius of a circular optimal grating patch (stimulus shown in c). Black and gray curves: responses to a high or low contrast grating patch, respectively;
contrast values used are indicated in each panel. Solid lines represent fits to the data (dots) using the DOGmodel (see Materials and methods). Dashed lines: cell's mean spontaneous
firing rate. Arrows: radius of the high (black) or low (gray) contrast stimulus evoking the largest response from the cell, i.e. the sRFhigh and sRFlow, respectively. Error bars are s.e.m.
The suppression strength (SSpatch, see Materials and methods) at high and low contrast for each cell was: 74.4% and 49.7% (a), 65% and 36% (b), 88% and 69% (c). (a–c, right)
Responses of the same three cells as a function of the inner radius of an annular grating in the far surround (stimulus shown in c). Black, red and gray curves: responses in the HH, LH
and LL contrast conditions, respectively. High and low contrasts used are the same as indicated in each respective left-hand panel. Triangles (rightmost data point): responses to
center-only stimulation. Blue squares: responses to the largest surround-only stimulus. Solid lines: fits to the data using the t-DOG model. The suppression strength (SSannulus, see
Materials and methods) in the HH, LH and LL condition for each cell was: 48%, 31% and 17% (a); 47%, -11% and 5% (b); 53%, 37% and 25% (c).
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in a previous study (Sceniak et al., 1999), we also fit the patch-size
tuning data with the difference of the integral of two Gaussian
functions (DOG model), as in Sceniak et al. (1999, 2001), and as we
did previously (Shushruth et al., 2009). Specifically, each patch-size
tuning curve was least-square fit using the function

R sð Þ = R0+Ke

Z s = 2

−s = 2
exp − 2y=a½ �2

� �
dy − Ki

Z s = 2

−s = 2
exp − 2y=b½ �2

� �
dy

with R0, Ke, Ki, a and b being free model parameters. Here, the values
of a and b determine the spatial scale of the excitatory and inhibitory
Gaussians, respectively.

The values of the free parameters in both models were optimized
to produce the best least-squares fit to the data. The analysis for the
patch-size tuning datawas performed on both the fitted and raw data;
both yielded similar results, but in Results section we report only the
analysis based on the raw data. The analysis for the annulus-size
tuning data reported in Results instead was based on the t-DOG fits.
Measures of surround suppression strength
From the patch-size tuning data we calculated the strength of

surround suppression as:

SSpatch = 100 ×
Rmax − Rlargest patch

Rmax
;

where Rmax is the maximal response (over all patch sizes), and
Rlargest_patch is the response to the largest patch size.

To compare our data with those of Sceniak et al. (1999), in Fig. 3b,
after fitting patch-size tuning curves with the DOG model function,
we calculated surround suppression strength as

SI =
Kib
Kea

;

This measure is the ratio of the area under the inhibitory Gaussian
over that of the excitatory Gaussian.



Fig. 3. Contrast-dependence of surround suppression strength measured with the expanding patch protocol. (a) Top inset: method used to compute the strength of suppression
from patch-size tuning curves (see also Materials and methods). Bottom: Scatter plot of surround suppression strength (SSpatch) at high vs. low contrast, quantified using the
method indicated in the inset. The blue ellipse indicates the 50% confidence interval of a Gaussian fit to the measured data, with its center representing the mean suppression
strength (65.8%±2.1 and 49%±2.8 for high and low contrast, respectively; n=80 cells). (b) Scatter plot of suppression strength at high vs. low contrast, quantified from the DOG
model's fits (indicated in the inset at the top of b) to the patch-size tuning data, as the ratio of the area under the inhibitory Gaussian over the area under the excitatory Gaussian (as
in Sceniak et al., 1999 ). (c) Distribution of suppression strength at high (black) and low (gray) stimulus contrast, measured as described in (a). Larger values indicate stronger
response suppression. Arrows: medians (black=70.8%; gray=50.3%). (d) Distribution of the change (Δ) in suppression strength with contrast (measured as: SSpatch at low
contrast - SSpatch at high contrast), computed for each cell. Negative (positive) values of Δ indicate that suppression was weaker (stronger) at low contrast. Arrow:median (-15.9%).
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The strength of far surround suppression was instead measured
from the annulus-size tuning data fit with the t-DOG model, as:

SSannulus = 100 ×
Rctr − Rinner

Rctr
;

where Rctr is the response to the center stimulus alone, and Rinner is
the response to the center stimulus plus the annular surround grating.
As the inner radius of this annulus we took

Rinner = max 4 × sRFhigh; sRFlow
� �

This is because the sRFlow is approximately two times larger than the
sRFhigh (Sceniak et al., 1999; Shushruth et al., 2009), and it is on
average coextensive with the length of V1 horizontal connections
(Angelucci et al., 2002). Thus, using as a conservative measure of near
surround (4 × sRFhigh), we ensured that the annular surround grating
was always beyond the approximate extent of horizontal connections,
i.e. in the far surround.
The recurrent network model

We used the network model from Schwabe et al. (2006) with
exactly the same parameterization. The only parameters varied were
the strengths of horizontal and feedback connections to inhibitory
neurons; this was done in order to explore the effects of these model
parameters on suppression strength, and to compare predicted
suppression strength with experimentally measured suppression
strength. The complete model description is given in Schwabe et al.
(2006); the model description, including all parameter values, is also
reported in the Supplementary Material. A simplified diagram of the
model's architecture is illustrated in Fig. 1b. Note, however, that the
actual network model was a recurrent model with two layers (V1 and
area MT) being modeled as one-dimensional arrangements of pairs of
excitatory and inhibitory model neurons, with the excitatory neurons
making inter-areal feedback and intra-areal horizontal connections.
The weights of these connections depend on the distance between the
pre- and post-synaptic neurons' RF centers. Specifically, neurons with
overlapping RF centers in V1 and the extrastriate area have strongest
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inter-areal connections; as the distance between RF centers increases,
the connection strength decreases exponentially with a space
constant determined by our anatomical data (see Supplementary
Material for relative equations). Here, the important feature of these
connections is that the space constant for horizontal connections is
much smaller than for inter-areal feedback connections (Fig. 1a).

Comparison of model predictions with experimental data

Since the network model is a mean-field model, which does not
account for the variability among cells we found in the data, we had to
derive a simple way of comparing the model predictions with the
data. We assume that the variability in the measured data is the result
of different cells having their own different circuits (e.g. with different
weights of horizontal, feedforward, and feedback connectivity),
possibly corresponding to the set of circuits we are exploring in
terms of different model parameterizations. Instead of deriving ad hoc
“noise models” for our recurrent mean-field network, to account for
the variability in the data, we adopted the following procedure. First,
we determined the parameters of a Gaussian fit to the suppression
data, i.e. the mean suppression and the covariance matrix for all
conditions in the patch-size and annulus-size tuning data. This gave
rise to a five-dimensional multivariate Gaussian probability distribu-
tion. Then, we determined the probability of the predicted suppres-
sion strengths, given this probabilistic description of our data. This
allows for a simple comparison of different model parameterizations
in terms of how compatible they are with the measured data. In other
words, we asked “How likely is it that we observe the predicted
responses” as opposed to “How likely are the observed responses
given our model predictions”.

Results

The goal of this study was to test a specific model prediction on the
contrast-dependence of surround suppression, namely that near and
far surround suppression are weaker when the RF center is stimulated
at low contrast (Figs. 1c, d). The second goal of this study was to
compare quantitatively the strength of surround suppression mea-
sured in the data with the suppression strength predicted by the
model operated in different parameter regimes. These results are
presented in two parts. In the first part, we present electrophysio-
logical data on the contrast-dependence of surround suppression. In
the second part, we present a data-model comparison.

To measure the strength of near surround suppression we used
the expanding patch method described in Materials and methods. In
effect this stimulus (shown in the left panel of Fig. 2c) activates all
surround regions, i.e. both near and far, in addition to the RF center;
however, we (Ichida et al., 2007) and others (Levitt and Lund, 2002)
have previously shown that it reveals predominantly the stronger
modulatory effects of near surround stimulation. To measure the
strength of far surround suppression, instead, we used the expand-
ing annulus method (see Materials and methods; stimulus shown on
the right panel of Fig. 2c). By masking out the near surround, this
stimulus allowed us to isolate the weaker modulatory signals from
the far surround, presumed to be mediated by feedback connections
(Figs. 1a, b).

Contrast-dependence of surround suppression strength: experimental
data

Near and far surround suppression: example responses
We measured patch-size tuning curves for 80 cells in macaque

parafoveal V1 (2°–8° eccentricities) by stimulating each cell with
circular patches of drifting sinusoidal gratings of increasing radius at
high and low contrast, and measuring the cell's response as a function
of the patch radius (the “expanding patch method”). Our V1 sample
included cells from all layers, as determined from histological
reconstruction of recorded cell location (the laminar data are reported
in a previous study) (Shushruth et al., 2009). In addition, most cells in
our sample had complex RFs (71 of 80 cells), therefore in the analysis
we make no distinction between simple and complex RFs.

The left panels in Figs. 2a–c show patch-size tuning curves for
three example cells, measured at high and low stimulus contrast. As
previously reported, responses increased with increasing patch radius
up to a peak, and then showed response suppression, and the patch
radius at peak response (arrows) was larger at low than at high
stimulus contrast (Sceniak et al., 1999; Sengpiel et al., 1997). In our
model this contrast-dependence of the patch radius at peak response
occurs because at low contrast horizontal inputs must be summed
over a larger area in order to bring the inhibitory neurons above firing
threshold. The cells in Fig. 2, however, differed in the contrast-
dependence of their asymptotic response. Whereas the mean firing
rate at asymptotic response was the same at high and low contrast for
the cell shown in the left panel of Fig. 2a, it was lower at low contrast
than at high contrast for the cell in Fig. 2b (left panel). The majority of
cells in our sample responded like the cells in Figs. 2a, b. However, for
about a third of the population (27% of cells) the mean firing rate at
the asymptotic response was higher at low than at high contrast; one
such cell is shown on the left panel of Fig. 2c. Despite these
differences, all three example cells in Fig. 2 (left panels) showed
stronger surround suppression at high than at low contrast (values of
suppression strength for each cell at each contrast level are reported
in the legend to Fig. 2).

For 70 neurons, for which we measured patch-size tuning curves,
we also obtained annulus-size tuning curves. To investigate the
contrast dependence of far surround suppression, the expanding
annulusmethodwas performed at three different contrast conditions:
high contrast center and surround (HH), low contrast center and high
contrast surround (LH), and low contrast center and surround (LL).
High and low contrast values were the same as used to measure
patch-size tuning curves for the same neurons.

The right panels in Fig. 2 show annulus-size tuning curves for the
same three cells shown in the left panels. In all three cells, the
response in the HH condition (black curve) decreased as the inner
radius of the annular grating was decreased, i.e. as more of the far
surround region was stimulated (read the x-axes on the right panels
of Fig. 2 from right to left). In our model this occurs because at high
center contrast the inhibitory neurons are above firing threshold, and
additional inputs to the RF center, via feedback and horizontal
connections, further increase their responses (Fig. 1b). In the low
contrast conditions (LH and LL, red and gray curves, respectively),
responses were typically lower than in the HH condition, because the
RF center was more weakly stimulated. Far surround suppression in
the low contrast conditions was either weaker than in the HH
condition (e.g. Figs. 2a, c right panels) or absent (e.g. Fig. 2b right
panel). Although the model cannot account for such variability in the
measured suppression, it predicts weaker suppression at low than at
high center stimulus contrast (Fig. 1d).

Near and far surround suppression: population statistics
For each patch-size tuning curve at high and low contrast we

measured the strength of surround suppression (SSpatch) as
illustrated in the inset of Fig. 3a, and as detailed in Materials and
methods. SSpatch=0% indicates complete lack of suppression,
whereas SSpatch=100% indicates that the cell's response was
completed suppressed by the largest grating patch. Suppression
strength varied significantly at both high (mean 65.8%±2.1) and
low (mean 49.5%±2.8) contrast levels, and cells that were strongly
and weakly suppressed were found at both high and low contrast.
Notably, we found virtually no cells with SSpatchb20% at high
contrast (Figs. 3a, c). Importantly, surround suppression was
significantly stronger at high than at low contrast (84% of cells are
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above theunity line in Fig. 3a;pb10-6, paired Student's t-test). Therewas
a significant correlation between suppression strength at high contrast
and that at low contrast (r=0.58, pb10-6; Pearson's correlation).

In contrast to these results, Sceniak et al. (1999), using a similar
expanding patch protocol as in our study, reported that surround
suppression is independent of stimulus contrast. In order to
reconcile our results with those of Sceniak et al. (1999), we applied
to our data these authors' measure of suppression strength, which
involved fitting the patch-size tuning data with the DOG model, and
measuring the ratio of the area under the inhibitory Gaussian over
that of the excitatory Gaussian (see Materials and methods). In
contrast, in the remainder of the paper we measured suppression
strength with respect to response magnitude (i.e. as in the panel of
Fig. 3a). Using the Sceniak et al. (1999) measure of suppression
strength, we found that the contrast dependency of suppression
strength was reversed, i.e., there was significantly stronger suppres-
sion at low contrast (Fig. 3b; p=0.0011, two-sample t-test). Sceniak
et al. (1999), indeed also reported slightly higher suppression at low
contrast, but in their data set this trend was not statistically
significant. These results indicate that the discrepancy between the
contrast-dependent surround suppression we measured and the
contrast-independent surround suppression reported by Sceniak et
al. (1999) is in fact due to the different methods of quantifying
Fig. 4. Contrast-dependence of far surround suppression strength measured with expanding
suppression from annulus-size tuning curves at high and low contrast (see also Materials
contrast condition (HH) vs. the two low contrast conditions (LH and LL, as indicated in legen
for the HH vs. LH (dark blue; n=63 cells) and HH vs. LL (light blue; n=66 cells) conditions.
(LH vs. LL; n=64 cells). (c) Distribution of far surround suppression strength in three diff
medians (35.7%, 24.9% and 11.7% for HH, LH and LL, respectively). (d) Distribution of the chan
Δ indicate that suppression strength was stronger in the HH condition. Arrows: medians (-
surround suppression (see Discussion). In the remainder of our
study, however, we have used our method of quantification, because
this involves only the measured responses and does not presuppose
any particular statistical model.

Fig. 3d shows the distribution of the difference (Δ) in the
strength of surround suppression between the low and high
contrast conditions, estimated for each cell. Negative values indicate
that suppression is weaker at low than at high contrast. About 84%
(67 out of 80 cells) of cells in our sample had a negative value of
ΔSSpatch (mean—16.3%±2.3), indicating weaker suppression at low
stimulus contrast.

We then tested the model's prediction of weaker far surround
suppression for lower contrast stimuli presented to the RF center. For
each cell we measured the strength of far surround suppression from
the annulus-size tuning data (SSannulus) as illustrated in the inset of
Fig. 4a (see Materials and methods). In the analysis reported in this
paper, the suppression was measured with respect to the center-only
response. However, we also performed the same analysis for
suppression measured with respect to the maximum response over
all annulus sizes (which would take into account facilitatory effects of
surround stimulation); both analyses yielded similar results. The
scatter plot in Fig. 4a shows, for each neuron, the strength of far
surround suppression in the two low contrast conditions (LH and LL)
annulus protocol. (a) Top inset: Method used to compute the strength of far surround
and methods). Bottom: Scatter plot of far surround suppression strength in the high
d). The blue ellipses indicate the 50% confidence intervals of the Gaussian fits to the data
(b) Scatter plot of far surround suppression strength in the two low contrast conditions
erent contrast conditions (according to legend), measured as indicated in (a). Arrows:
ge (Δ) in suppression strength with contrast, computed for each cell. Negative values of
22.7% red; -7.5% gray).



Fig. 5. Comparison of suppression strength measured with expanding patch (near) vs.
suppression strength measured with expanding annulus (far). (a) Scatter plot of
absolute strength of suppression measured with patch vs. measured with annulus at
high and low contrast (n=69, 64, 67 black, filled gray and empty gray dots, respectively).
(b) Scatter plot of the ratio in suppression strength measured from patch-size tuning
curves vs. the ratio in suppression strength measured from annulus-size tuning curves
for each low contrast condition (LH and LL). Negative values of the ratio indicate
surround facilitation. n=63 and 66 black and gray dots, respectively.
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compared to the high contrast (HH) condition. Most cells (70% of the
red dots, and 82% of the gray dots) are above the unity line, indicating
stronger suppression in the HH than in the LH or LL condition.
Comparing far suppression strength in the two low contrast
conditions, LH vs. LL (Fig. 4b) revealed that a lower contrast far
surround stimulus exerts weaker suppression of the same low
contrast center stimulus than a higher contrast far surround stimulus
(72% of cells are above the unity line; pb0.02). In summary, far
surround suppression is weaker when the center stimulus is at lower
contrast and it is even weaker when the surround is also at low
contrast. The latter result is consistent with the mechanism
operating in the model, because in the LH condition the higher
contrast surround stimulus drives the center inhibitory neurons
more strongly than the lower contrast surround stimulus in the LL
condition. Figs. 4c, d shows two different quantifications of these
results. Specifically, Fig. 4c shows the distribution of far suppression
strength for the population in the three difference contrast
conditions. Mean suppression strength in the two low contrast
conditions (LH: 25.1%±3.9, LL: 13.7%±3.4) was significantly weaker
than in the high contrast condition (HH: 37%±2.3; pb0.001 for HH
vs. LH and pb10-6 for HH vs. LL in paired t-tests). Note also that in
the low contrast conditions, but not in the high contrast condition,
some cells (20% for LH, and 36% for LL) showed surround facilitation
rather than suppression (see also Ichida et al., 2007). Fig. 4d shows,
for each cell, the distribution of the difference in the strength of far
surround suppression between the low and high contrast conditions
(ΔSSannulus). Most cells showed negative values of ΔSSannulus, and the
latter was significantly (pb10-10, paired t-test) lower for the LL-HH
condition (mean ΔSSannulus=-22.3%±2.9) than for the LH-HH
condition (mean ΔSSannulus=-11.9%±3).

We hypothesized that the near surround may exert stronger
suppression than the far surround, because all three types of
connections (feedforward, horizontal and feedback) contribute to the
former, while only feedback contributes to the latter. To compare the
strength of suppression from the near and far surround, in Fig. 5a we
plot for each cell at high and low contrast the absolute suppression
strength induced by the grating patch (SSpatch) vs. the strength of far
surround suppression induced by the annular grating (SSannulus).
Virtually all cells in Fig. 5a are above the unity line (100% of black
dots, 77% of filled gray dots, and 91% of empty gray dots), indicating that
for almost all cells at both high and low contrast SSpatchNSSannulus
(pb10-10, paired t-test for all contrast conditions). SSpatch and SSannulus
were also significantly correlated at both high contrast (high vs. HH:
r=0.32, p=0.007, Pearson's correlation) and low contrast (low vs. LH:
r=0.32, p=0.0095; low vs. LL: r=0.41, p=5.6-4), suggesting that the
near and far surround may share similar suppressive mechanisms. In
Supplementary Fig. 2 we demonstrate that the weaker suppression
produced by far surround stimulation is not simply due to the smaller
surround area stimulated with the annular grating, compared to that
stimulated with the patch. When normalized by area, near surround
suppression was much stronger than far surround suppression. These
data are also consistent with previous studies showing that far
surroundmodulation isweaker thannear surroundmodulation (Ichida
et al., 2007; Levitt and Lund, 2002; Shushruth et al., 2009).

We next compared quantitatively the magnitude of the contrast-
dependence of suppression strength induced by near surround
stimulation vs. far surround stimulation. We normalized suppression
strength at low contrast to suppression strength at high contrast. In
Fig. 5b, we plot for each cell this suppression strength ratio for near
surround stimulation, measured from the patch-size tuning curve
(SSpatch at low contrast/SSpatch at high contrast), vs. the ratio for far
surround stimulation, measured from the annulus-size tuning curve
(SSannulus at LH/SSannulus at HH, black dots; or SSannulus at LL/SSannulus
at HH, gray dots). A ratio=1 indicates that the suppression at low
contrast is the same as at high contrast, while a ratiob1 indicates
weaker suppression at low contrast. Although the suppression
strength ratio was b1 for both near and far surround stimulation, it
was significantly larger for near than for far surround stimulation.
Specifically, for near surround stimulation, the suppression strength
ratio averaged 0.68±0.04, while for far surround stimulation, it
averaged 0.54±0.13 (LH/HH) or 0.25±0.15 (LL/HH). The mean
difference of these ratios (SSpatch ratio–SSannulus ratio) calculated for
each cell was -0.14±0.12 for the black dots, and -0.44±0.14 for the
gray dots in Fig. 5b; both means were significantly different from
zero (pb10-10 for both; paired t-test). These results indicate that the
magnitude of the contrast-dependent change in suppression strength
is larger for far than for near surround suppression. This difference
largely results fromweaker suppression being induced at low contrast
by far surround stimuli compared to near surround stimuli. Again this
result emphasizes that while both near and far surround suppression
likely share similar suppressive mechanisms, far surround suppres-
sion is weaker than near surround suppression, and this difference is
even more pronounced at low contrast.

Contrast-dependence of surround suppression strength: data-model
comparison

Surround suppression strength measured by the expanding patch
method

In the original published version of our recurrent network model,
we assumed, following available experimental data from rat visual
cortex (Johnson and Burkhalter, 1996), that feedback connections do
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not directly target inhibitory neurons, and that the latter are driven
mainly by horizontal connections (Hirsch and Gilbert, 1991; McGuire
et al., 1991). We demonstrated that despite this constraint, stimuli in
the far surround could exert suppressive modulations on center
responses via feedback connections targeting monosynaptic horizon-
tal connections, which in turn target inhibitory neurons in the center
(Fig. 1b). However, direct monosynaptic feedback excitation of
inhibitory neurons is an alternative connection scheme that is strongly
Fig. 6. Surround suppression strength measured with expanding patch: data-model compa
different strengths of horizontal and feedback excitation of inhibition (GIE and GIX, respecti
suppression strength. (c, d) Comparison of the predicted and experimentally measured SSpa
the data (see Materials and methods) at high (c) and low (d) contrast. The model's predict
corresponding to strong lateral and feedback excitation of inhibition (upper right corner
excitation of inhibitory neurons (arrows point towards stronger feedback excitation of inhib
of inhibition, namely the value used in the original model parameterization (solid line), and
f4) Simulated patch-size tuning curves for the different parameter regimes marked as f1–f4 i
0% and 21% at low contrast, respectively.
suggested by more recent anatomical evidence from macaque
monkey. In particular, Anderson and Martin (2009) have shown,
albeit for a very small sample of V2 feedback axons, that the latter can
form ∼14% of their synapses in V1 with putative GABAergic targets.

Therefore, we have first characterized the consequences on the
predicted strength of surround suppression, of changing the values of
two key model parameters, i.e. the strength of horizontal and
feedback excitation of inhibitory neurons. Figs. 6a, b shows how the
rison. (a, b) Plots of SSpatch at high (a) and low (b) contrast predicted by the model for
vely). Lines of iso-suppression strength are marked in (a–b), with numbers indicating
tch. Plots of the probability of the predicted SSpatch, given the probabilistic description of
ed SSpatch is closer to the experimentally measured suppression for parameter regimes
). (e) Predicted SSpatch at high and low contrast for increasing strengths of feedback
ition). The two different arrows indicate two different strengths of horizontal excitation
50% of this value (dashed line). The blue ellipse corresponds to the ellipse in Fig. 3a. (f1–
n panel (c). SSpatch in f1, f2, f3, f4=52%, 62%, 0% and 42% at high contrast, and 45%, 48%,
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simulated strength of surround suppression (measured from patch
size tuning curves) depends on the values of these two model
parameters. For both high (Fig. 6a) and low (Fig. 6b) contrast stimuli,
the predicted suppression strength increases with stronger horizontal
excitation of inhibitory neurons. Likewise, the predicted suppression
strength increases with stronger feedback excitation of inhibitory
neurons. For all combinations of values of these two model
parameters, suppression was weaker for low contrast stimuli (Fig.
6b) than for high contrast stimuli (Fig. 6a). Thus, this key prediction,
which we observed in the experimental data, is unchanged by
variations in the values of these two model parameters. We then
quantitatively compared the predicted suppression strength with the
experimentally measured suppression strength, for these parameter
combinations. The model in Schwabe et al. (2006) assumed strong
horizontal excitation of local inhibitory cells, and no feedback
excitation of inhibition, hence, it corresponds to the bottom right
corner in the explored parameter space (red square in Figs. 6a, b). This
parameter combination results in a model prediction of about 40%
suppression strength at high contrast and about 20% at low contrast.
Therefore, the model of Schwabe et al. (2006), in its original
parameterization, cannot fully account quantitatively for the mean
strength of suppression seen in our patch-size tuning data (65.8% at
high contrast, and 49% at low contrast; see Figs. 3a, b). The
suppression strength we measured experimentally, however, was
variable; hence expressing it only in terms of mean suppression
strength may disregard potentially important information for com-
paring the data with the model. The network model, on the other
hand, is a model of mean responses, and it makes no prediction of the
variability between cells in the data. Therefore, to exploit the
variability measured in the data for a comparison with the model's
predictions, we derived a probabilistic description of the suppression
strengths in the data, in terms of a multivariate Gaussian probability
distribution (see Materials and methods). The ellipse in Fig. 3a (like
the ellipses in Figs. 4a, b) represents the 50% confidence interval for
these fits. The ellipses are elongated and tilted, because they also
capture the direction of scatter in the data. Then, we asked the
following question: “How probable is the predicted strength of
suppression, for high and low contrast stimuli, under this probabilistic
description of our data?” In otherwords, how likely is it thatwewould
have measured the predicted suppression strength? Note that while
Schwabe et al.'s (2006) model sits at the bottom right corner of the
explored parameter space (red point marked as f4 in Fig. 6c), different
combinations of parameter values are as probable as the model in the
original parameterization. The iso-probability lines in the plots of Figs.
6c, d are determined by the iso-suppression lines in Figs. 6a, b,
because the latter indicate parameter regimes in which the model
predicts the same strength of suppression. Hence, they are equally
compatible with the data and are assigned the same probability. In Fig.
6e, the arrows indicate, for two different strengths of lateral excitation
of inhibitory neurons (GIE), the model's predicted suppression
strengths at high and low contrast, as we increased the strength of
monosynaptic feedback to inhibitory neurons (GIX). Both parameter
explorations end approximately in the center of the error ellipse
(which is the same as in Fig. 3a), indicating that both predict
suppression strengths which approximate the mean suppression
strength in the data. However, while for all parameter regimes the
suppression strength is lower at low than at high contrast (Fig. 6b vs.
a), the best quantitative match with the measured suppression
strength in the data was predicted for strong feedback excitation of
inhibitory neurons. This is not the parameter regime that was used in
the original published model, in which, there was no feedback
excitation of inhibitory neurons (Schwabe et al., 2006).

Figs. 6f1–f4 shows model simulations of patch-size tuning curves
under different parameter settings (corresponding to the dots in Fig.
6c). While strong horizontal excitation of inhibitory neurons leads to
strong suppression, which asymptotes at small stimulus sizes (b2°;
Figs. 6f2, f4), weak horizontal excitation of inhibitory neurons results
in weaker suppression, which asymptotes at larger stimulus sizes
(Fig. 6f1). In particular, weak horizontal excitation of inhibitory
neurons reveals the spatially more extensive suppression arising
from the far surround, mediated by feedback connections; this is
because the surround stimulus continues to suppress the center
response at distances from the RF center beyond the extent of
horizontal connections. Obviously, if the inhibitory neurons are
driven neither by horizontal nor feedback connections, the surround
is predicted to facilitate the center response for any stimulus size and
contrast (Fig. 6f3). Finally, compared to our original model
parameterization (Fig. 6f4), strong lateral and feedback excitation
of inhibitory neurons (Fig. 6f2) leads to stronger suppression at both
high and low contrast, closer to the experimentally measured
suppression strength. Note that the predicted responses in the high
and low contrast conditions are similar, but the differences in the
peak responses indicate weaker surround suppression at low
contrast.

Surround suppression strength measured by the expanding annulus
method

We then determined how the predicted strength of far surround
suppression is affected by changes in the strength of horizontal and
feedback excitation of inhibitory neurons. To this purpose we
measured suppression strength on simulated annulus-size tuning
curves under different parameter regimes. To ensure a fair compar-
ison of the model predictions with the data, for the simulated
experiments, the size of the center grating stimulus was adjusted to
match the size of the sRFhigh measured for each of the explored
parameter configurations. This is because different combinations of
the explored parameters affect the size of the sRFhigh (see Figs. 6f1–
f4). The predicted far surround suppression strengths at high (HH)
and low (LH) center stimulus contrast are shown in Figs. 7a and b,
respectively, for all model parameterizations (the predicted far
surround suppression strength in the LL condition is shown in
Supplementary Fig. 1). For all combinations of values of these two
model parameters, suppression was weaker at low (LH or LL)
compared to high center stimulus contrast (HH). Only for strong
horizontal and feedback connections to inhibitory neurons (upper
right corner in Figs. 7a, b) did the predicted suppression strengths in
the HH and LH (and LL) conditions have similar maximal strength. In
the HH and LH conditions the model in the original parameterization
(red square in Figs. 7a–b) predicted suppression strengths of 56.7%
and 33%, respectively (predicted suppression strength in the LL
condition was 23.8%—see Supplementary Fig. 1). Therefore, the model
of Schwabe et al. (2006), in its original parameterization, can account
quantitatively for the experimentally measured far suppression
strength; in fact, it predicts even stronger mean suppression than
that seen in the annulus-size tuning data (37%, 25% and 14% in the HH,
LH and LL conditions, respectively; see Fig. 4c). We then determined
the probability of the predicted strength of suppression, given the
probabilistic description of our data. As in Figs. 6c–d, the iso-
suppression lines in Figs. 7a, b determine the iso-probability lines in
the plots of Figs. 7c–d. Note that the original model parameterization,
with strong horizontal excitation of inhibition and no feedback
connections to inhibitory neurons (red point marked as f4 in Fig. 7c),
predicts strong suppression. However, stronger feedback connections
to inhibitory neurons also lead to far surround suppression strengths
compatible with the measured suppression strengths in the data, over
a wide range of values of horizontal connections' strengths. In Fig. 7e,
the arrows indicate, for two different strengths of lateral excitation of
inhibitory neurons (GIE), the model's predicted suppression strengths
in the HH and LH conditions, as we increased the strength of
monosynaptic feedback to inhibitory neurons (GIX). When the
strength of the horizontal connections was set to 50% of the value
used in the original model parameterization (dashed line), the model



Fig. 7. Surround suppression strength measured with expanding annulus: data-model comparison. (a, b) Plots of SSannulus in the HH (a) and LH (b) contrast conditions predicted by
the model for different strengths of horizontal and feedback excitation of inhibition (GIE and GIX, respectively). (c, d) Comparison of the predicted and experimentally measured
SSannulus. Plots of the probability of the predicted SSannulus, given the probabilistic description of the data (seeMaterials andmethods) in the HH (c) and LH (d) contrast conditions. (e)
Predicted SSannulus in the HH and LH contrast conditions for increasing strengths of feedback excitation of inhibitory neurons (arrows point towards stronger feedback excitation of
inhibition). The two different arrows indicate two different strengths of horizontal excitation of inhibition, namely the value used in the original model parameterization (solid line),
and 50% of this value (dashed line). The blue ellipse corresponds to the ellipse in Fig. 4a. (f1–f4) Simulated annulus-size tuning curves for the different parameter regimes marked as
f1–f4 in panel (c). SSannulus in f1, f2, f3, f4=42%, 42%, -24%, 42% (HH), 19%, 42%, -36%, 27% (LH) and 12%, 42%, -33%, 18% (LL), respectively. (g) Comparison of the model's predicted
SSpatch and SSannulus considered together with those measured experimentally. Other conventions are as in Fig. 6.
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predicted facilitation of the center response by the surround annulus
for weaker values of feedback connections' strength, and suppression
for stronger feedback connections. Instead for strong horizontal
connections (solid line, as in the original model parameterization) all
values of feedback connections' strength predicted suppression. Note
that the origin of the solid line is close to the center of the ellipse. This
indicates that the model in its original parameterization can predict
the measured suppression strength in the annulus-size tuning data.
However, the same mean values of far surround suppression strength
can also be captured by a model parameterization corresponding to
weaker horizontal and stronger feedback excitation of inhibitors than
in the original model (end of the dashed line).

Figs. 7f1–f4 shows model simulations of annulus-size tuning
curves in the HH, LH and LL conditions under different parameter
settings (corresponding to the dots in Fig. 7c). Weak horizontal and
feedback connections to inhibitory neurons generate facilitation at all
contrast conditions (Fig. 7f3). Strong feedback and weak horizontal
connections to inhibitors generate suppression at all annulus sizes in
the HH condition, but in the LH and LL conditions they cause
facilitation for smaller surround stimuli, and suppression for larger
surround stimuli (Fig. 7f1). Note that the initial facilitation at low
center stimulus contrast is present for all model parameterizations
(Figs. 7f1–f4). This results from local inhibition being inactive when
the center is weakly stimulated, and no additional drive from an
annulus in the far surround is present. At high center contrast, instead,
local inhibition is active and any additional drive leads to suppression,
even for small annulus sizes (Figs. 7f1, f2, f4). As long as the local
inhibition in the model is activated by an annulus in the far surround
[either via monosynaptic feedback (Fig. 7f1), or via feedback relayed
by horizontal connections (Fig. 7f4), or via both pathways (Fig. 7f2)],
the simulated size tuning curves are similar to the experimentally
measured tuning curves (right panels in Figs. 2a–c). Although far
surround facilitation is not prominent in the responses of the example
cells shown in Fig. 2, in a previous study we have shown that many V1
cells show far surround facilitation in the LH and LL conditions (Ichida
et al., 2007). Thus, themodel regimesmarked by dots f1,f2,f4 in Fig. 7c
are not only plausible candidates in terms of the strength of predicted
far surround suppression, but also in terms of the shape of the
annulus-size tuning curves.

We have so far considered the probability of the predicted
suppression in the patch- and annulus-size experimental protocols
separately. We now consider the probability of the predicted
suppression for both experimental protocols together (Fig. 7g).
While the model without feedback connections to inhibitory neurons
can predict the experimentally measured suppression in the annulus-
size tuning data, as long as horizontal connections to inhibitory
neurons are strong (Fig. 7c, dot marked f4), this parameterization is
not likely (Fig. 7g) when the predictions for the experimentally
measured suppression in the patch-size tuning data are considered as
well. This is because in this regime, the latter form of suppression is
underestimated (origin of solid line in Fig. 6e). Only for stronger
feedback connections to inhibitors do the predictions match the
measured mean suppression strength in the patch-size tuning data
(end of lines in Fig. 5e). As a consequence, weak feedback connections
to inhibitory neurons are ruled out when patch and annular surround
suppression are jointly used to constrain the model. Similarly, with
very strong feedback and horizontal connections we predict even
stronger far surround suppression than that measured in the data
(end of solid line in Fig. 7e). Only weakening the strength of
horizontal connections to inhibitory neurons leads to predicted far
surround suppression matching that measured in the data (end of
dashed line in Fig. 7e). As a consequence, very strong horizontal
connections are ruled out as well, leaving model predictions with
intermediate horizontal connection strengths and strong feedback
connections as the most probable (Fig. 7g), given the measured data
in both experimental protocols.
Combined effect of center stimulus size and contrast on the strength of
surround suppression

In Results above, we have shown that our model predicts stronger
near and far surround suppression at higher than at lower center
stimulus contrast. Our data reported above confirm this model
prediction. However, in contrast to our findings, Levitt and Lund
(1997) reported that surround suppression is stronger for lower
contrast center stimuli, a result that was later confirmed by
Cavanaugh et al. (2002b). We hypothesized that the discrepancy
between our results and those from previous studies may be due to
different definitions of size and low contrast used for the center
stimulus. In particular, Levitt and Lund's (1997) experimental
protocol consisted of a center grating fitted to the radius of the
sRFhigh, presented at two contrast levels, high and low; this was
surrounded by an annular grating of 75% contrast and 8° outer
diameter abutting the center grating. For the center grating, these
authors chose as high contrast a value of 75%, and as low contrast a
value that evoked a response near the middle of the cell's contrast-
response function. In our study, we used a similar experimental
protocol, but a blank annulus separated the surround and center
gratings, and both our high and low contrast values were tailored to
the recorded cell's contrast-response; importantly we chose as low
contrast a value significantly lower than that used in Levitt and Lund
(1997), i.e. in most instances the lowest contrast that evoked a
reliable response from the cell (see also Materials and methods).
Cavanaugh et al. (2002b) used as high contrast a fixed value of 50%,
and as low contrast values intermediate between those used by Levitt
and Lund (1997) and those used in the present study.

Using our network model with the original parameterization
(Schwabe et al., 2006), we simulated responses to a stimulus
consisting of a high contrast (75%) surround annulus of 8° outer
radius abutting a center grating whose size was varied slightly above
and below the optimal (i.e. the sRFhigh, which in the simulation
measured 0.47°). The center grating was presented at high contrast
(75%, HH condition) or at low contrast (LH condition); the low
contrast values were varied (between 20% and 60% contrast in the
simulation). Suppression strength was measured with respect to the
center alone response at each respective contrast. We then computed
the difference (Δ) in surround suppression strength between the LH
and HH condition, as done for Fig. 4d. Fig. 8a shows a 2D plot of the
difference in suppression strength as a function of the radius of the
center grating, and of the contrast of the center grating in the LH
condition. A negative value of Δ indicates stronger suppression in the
HH than in the LH condition. It is clear from this plot that a slight
overestimate of the sRFhigh radius, combined with a higher center
contrast in the LH condition, can produce positive values of Δ, i.e.
stronger suppression for lower center stimulus contrast, as in Levitt
and Lund (1997). On the other hand, for lower center contrast levels,
comparable to those used in our study in the LH condition, any center
stimulus size around the optimal produces negative values of Δ, i.e.
stronger suppression for higher center stimulus contrast, as in the
present study. Fig. 8b further illustrates this concept, by showing the
predicted suppression strength for a 75% contrast surround stimulus
combined with a center stimulus of 75% (HH condition), 50% or 30%
contrast (LH conditions), as a function of the size of the center
stimulus. Suppression at 75% center contrast is stronger than at 30%
contrast for all center stimulus sizes, however stronger suppression is
predicted for 50% center contrast than for 75% center contrast for
larger center stimulus sizes; this is because at these center stimulus
sizes the high contrast response is already suppressed compared to
the maximal response generated by an optimally sized stimulus
(here: 0.47°).

We conclude that both our results and our network model are
consistent with the results of Levitt and Lund (1997) and Cavanaugh
et al. (2002b).



Fig. 8. Effect of center stimulus size and contrast on the predicted strength of surround
suppression. (a) 2D plot of predicted Δ in surround suppression strength (SS in the LH
condition–SS in the HH condition) as a function of the center grating patch radius, and
of the low contrast level of the center grating patch in the LH condition. The cell's sRFhigh
radius in the simulation was 0.47°. The surround was an 8° annulus of fixed high
contrast (75%) abutting the center grating, whose size was varied slightly above and
below the sRFhigh. The center contrast in the HH condition was 75%, while the contrast
of the center grating in the LH condition was varied between 20% and 60%. (b) Predicted
surround suppression strength at high (75%, HH) and low center contrast (50% or 30%,
LH1 and LH2, respectively) as a function of the radius of the center grating patch
(surround contrast was 75% for all three curves). Suppression strength in the HH
condition is maximal at the optimal center stimulus size (i.e. when the center grating
matches the radius of the recorded cell's sRFhigh); for larger center stimulus radii,
suppression progressively decreases (because the control “center-only” response is
already suppressed at such center stimulus sizes), until it becomes weaker than
suppression in the LH1 condition. In the LH2 condition, suppression is weaker than in
the HH condition for any center stimulus radius.
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Discussion

In this study, using single unit recordings in macaque V1, we have
tested a prediction of a previously published recurrent networkmodel
(Schwabe et al., 2006) on the contrast dependence of surround
suppression in V1. Specifically, the model predicted weaker near and
far surround suppression when the RF center is stimulated with low
contrast stimuli than when it is stimulated with high contrast stimuli.
We have shown that our electrophysiological results are consistent
with this model's prediction. Therefore surround suppression is
weaker, and the spatial scale of signal integration is increased at
low stimulus contrast.

Using a systematic parameter exploration, we have further
quantitatively compared the strengths of the predicted and experi-
mentally measured surround suppression. We found that the model
in its original parameterization (which included strong horizontal,
and no feedback excitation of local inhibitory neurons), can account
quantitatively for the experimentally measured strength of far
surround suppression, but cannot fully account for the strength of
near surround suppression measured in the data. The parameter
regime that best described quantitatively the experimentally mea-
sured near and far surround suppression included weaker horizontal
and stronger feedback excitation of local inhibition than assumed in
the original model.

Contrast-dependence of near surround suppression strength measured
by the expanding patch method

It has previously been shown that stimulus contrast affects spatial
summation in V1 (Kapadia et al., 1999; Sceniak et al., 1999; Sengpiel
et al., 1997). While there is agreement that at low center stimulus
contrast V1 RFs integrate signals over larger regions of visual space,
the contrast-dependence of the suppressive effects of the surround
has been less clear. Using the same expanding grating patch method
used in the present study to measure suppression strength, some
studies reported lower suppression strength for center and surround
stimuli of lower contrast (Cavanaugh et al., 2002a; Sadakane et al.,
2006). Instead, Sceniak et al. (1999) reported that suppression
strength was independent of stimulus contrast. Here we have
reproduced both findings, and demonstrated that the apparent
discrepancy between them is due to different methods of quantifying
suppression strength. While both measures of suppression strength
are adequate, we have chosen to use the one that is based on
measuring suppression with respect to response magnitude directly
from the data, because this method does not presuppose any
particular model. Importantly, our recurrent network model, albeit
perhaps an oversimplification, does not affect the purely descriptive
characterization of surround suppression in the data. In contrast, the
measure used by Sceniak et al. (1999) assumes that surround
suppression of center responses is realized by the summation over
an excitatory center and a spatially more extensive inhibitory
surround; but alternative mechanisms are also conceivable.

We conclude that the contrast dependence of near surround
suppression strength observed in our experimental data is consistent
with results from previous studies and with the prediction of our
model.

Contrast-dependence of far surround suppression strength measured by
the expanding annulus method

To test the model prediction on the contrast dependence of
feedback-mediated far surround suppression, we used a center–
annular surround stimulus designed to minimize afferent stimulation
of feedforward and horizontal connection neurons in the near
surround, and to isolate the weaker modulatory signals from the
feedback-mediated far surround (Ichida et al., 2007). Consistent with
the model's prediction, in our experimental measurements we found
that a high contrast surround annulus induces weaker suppression of
a low contrast center stimulus (LH condition) than of a high contrast
center stimulus (HH condition); lowering the contrast of the surround
stimulus in addition to that of the center stimulus (LL condition)
decreases suppression strength even further. However, opposite to
this finding, using a similar center–surround stimulus, previous
studies reported that a high contrast surround stimulus suppresses
a low contrast center stimulus more strongly than a high contrast one
(Cavanaugh et al., 2002b; Levitt and Lund, 1997). Here, we have
provided at least one possible interpretation for the apparent
discrepancy between our results and results from these previous
studies. In particular, we have shown that our model can generate
opposite effects on the contrast-dependence of far surround suppres-
sion strength, depending on the size of the stimulus presented to the
RF center, and the contrast level of the center stimulus chosen for the
low contrast condition (when compared to the high contrast
condition). According to this interpretation, choosing very low
contrast levels for the center stimulus in the LH condition (as we
have done) would produce weaker suppression at lower than at
higher center contrast, irrespective of whether the sRFhigh radius is
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slightly over- or under-estimated. However, higher contrast levels of
the center stimulus in the LH condition (e.g. as in Levitt and Lund,
1997) could produce the opposite result (i.e. stronger suppression at
low center contrast), if the size of the cells' sRFhigh is slightly
overestimated. Therefore, our results on the contrast-dependence of
far surround suppression strength are not inconsistent with those
from previous studies, and our model is consistent with, and can
account for, both findings.

Contrast-dependence of surround suppression in the network model

Themodel prediction of weaker near and far surround suppression
for lower center stimulus contrast stems from the assumption that
there exists a response asymmetry between excitation and inhibition
(Dragoi and Sur, 2000; Schwabe et al., 2006; Somers et al., 1998), with
suppression being mediated by local intracortical inhibition. For weak
activation of the RF center (e.g. a low stimulus contrast) local
inhibition is inactive. For strong activation (e.g. a high stimulus
contrast in the RF center, or large surround stimuli activating
horizontal and feedback connections), local inhibition crosses a
threshold and suppresses the center response. Both the contrast-
dependence of RF size and of surround suppression strength follow
from this same assumption of response asymmetry between
excitation and inhibition. The specific mechanism that we, and
previously Somers et al. (1998), have proposed for its implementation
(i.e. higher threshold and gain inhibitory neurons) is a specific and
verifiable model's assumption, currently only partially supported by
experimental data. For example, there have been reports in cortical
layer 2/3 of high gain interneurons with facilitating synapses, whose
response can only be recruited in the late phase of the action potential
train of their presynaptic pyramidal cells (Kapfer et al., 2005; Pouille
and Scanziani, 2004). These facilitating interneurons could offer an
alternative mechanism to higher threshold interneurons to imple-
ment the delayed recruitment of inhibition that is central to our
model.

The response asymmetry between excitation and inhibition
proposed in our model, could give rise to contrast-dependent spatial
integration as described by the DOG model (Sceniak et al., 1999), or
contrast-dependent divisive normalization as in the ratio-of-Gaus-
sians model (Cavanaugh et al., 2002a); however, at the circuit-level it
is realized by a network with fixed and contrast-independent
connectivity. Other interpretations have employed the notion of
functional connectivity. For example, recently Nauhaus et al. (2009)
measured the interactions of neurons in V1 as a function of cortical
distance and stimulus contrast. They concluded that the weight of
horizontal connectivity dominates over that of feedforward connec-
tions at low contrast, and vice versa at high contrast. While this study
provides strong evidence for stimulus-dependent coupling in V1, it is
not conclusive with respect to the circuitry and mechanisms
underlying it.

Thalamic surround suppression

Our model implements surround suppression in V1 using local
intracortical inhibition and purely intracortical mechanisms, because
it was specifically designed to investigate the cortical contribution to
surround modulation. More specifically, our model was designed to
account for responses in the superficial layers of V1, where both
horizontal and feedback connections are prominent. While spatial
summation and surround effects have generally been shown to occur
in all V1 layers, subtle laminar differences do exist that may reflect
laminar differences in anatomical connectivity. In particular, sur-
round sizes are larger outside V1 input layer 4C (Ichida et al., 2007),
which lacks horizontal and feedback connections, and surround
suppression is stronger in the superficial than in the input layers
(Levitt and Lund, 2002; Sceniak et al., 2001; Shushruth et al., 2009).
These laminar differences suggest that horizontal and feedback
connections are needed to generate larger and stronger surrounds
outside the input layer.

However, there is evidence that feedforward afferents from the
lateral geniculate nucleus (LGN), which target neurons in layer 4C,
contribute to V1 surrounds. First, LGN cells show extra-classical
surround suppression (Alitto and Usrey, 2008; Bonin et al., 2005;
Sceniak et al., 2006; Solomon et al., 2002). Second, blockade of
intracortical inhibition in cat V1 did not abolish V1 surround
suppression measured by the expanding patch method (Ozeki et al.,
2004). Third, two mechanisms have been shown to contribute to
surround suppression in V1, one having broad spatio-temporal tuning
(likely originating in the LGN), the other being sharply tuned for
orientation, spatial and temporal frequency (likely generated intra-
cortically) (Webb et al., 2005). However, there is also evidence that
LGN surround suppression cannot fully account for V1 surrounds.
First, while some have argued for orientation-tuned surround
suppression in cat LGN (Naito et al., 2007; Sillito et al., 1993), others
have disagreed (Bonin et al., 2005); and evidence in primates
indicates that LGN surrounds in this species are untuned for
orientation (Solomon et al., 2002; Webb et al., 2002). Therefore, at
least in primates, intracortical mechanisms are needed to generate
orientation-tuned surrounds. Second, the narrow spatial spread of
macaque geniculocortical axons (Angelucci and Sainsbury, 2006),
added to the small size of LGN surrounds (Alitto and Usrey, 2008;
Sceniak et al., 2006), cannot fully account for the large spatial scale of
V1 surrounds (Cavanaugh et al., 2002a; Levitt and Lund, 2002; Sceniak
et al., 2001; Shushruth et al., 2009) (see Fig. 1a). Consistent with this
notion is also our finding that V1 layer 4C lacks large surrounds
(Ichida et al., 2007; Shushruth et al., 2009), and that the largest
surrounds in this layer are coextensive with the largest LGN
surrounds. This suggests that layer 4C surrounds are inherited from
the LGN, while the larger surrounds outside layer 4C are generated by
intracortical connections. The most likely scenario is that V1 surround
suppression inherits a spatially restricted orientation-untuned com-
ponent of surround suppression from the LGN (Webb et al., 2005;
Xing et al., 2005), whose spatial scale is determined by that of
geniculocortical afferents (Angelucci and Sainsbury, 2006). However,
intracortical mechanisms based on intracortical inhibition, via
horizontal and feedback connections, contribute a spatially broader
and orientation-tuned component to V1 suppression (Angelucci et al.,
2002; Cavanaugh et al., 2002b; DeAngelis et al., 1994; Ozeki et al.,
2009; Xing et al., 2005).

Surround suppression in cat and primate LGN is also weaker at low
than at high contrast (Bonin et al., 2005; Sceniak et al., 2006; Solomon
et al., 2002). Therefore it is possible that the contrast-dependence of
surround suppression strength in V1 may at least in part be inherited
from the LGN.

Strength of surround suppression: data-model comparison

In its original version, the model was operated in a regime of
strong horizontal and no feedback connections to local inhibitory
neurons (Schwabe et al., 2006). This was motivated by the only
anatomical data on the targets of feedback axons, available at the time
we implemented the model. These data showed in rat that feedback
neurons from extrastriate cortex target almost exclusively excitatory
neurons in V1 (Johnson and Burkhalter, 1996), and exert predomi-
nantly excitatory influences on their target V1 cells (Shao and
Burkhalter, 1996). We showed that despite this constraint, stimuli
in the far surround could suppress center responses via feedback
targeting monosynaptic horizontal connections to inhibitory neurons
(Schwabe et al., 2006). Here we have demonstrated that when
operated in a regime with no direct feedback contacts onto inhibitory
neurons, the model can quantitatively account for the strength of far
surround suppression, but cannot fully account for the strength of
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near surround suppression. This suggests that additional inhibition is
needed in the model to fully account for the suppression data. Recent
anatomical data in macaque visual cortex have shown that V2
feedback axons can form about 14% of their synapses in V1 with
putative inhibitory neurons (Anderson and Martin, 2009). Therefore,
we have examined how adding direct feedback contacts onto
inhibitory neurons could affect the strength of suppression. Specifi-
cally, we have performed a systematic quantitative comparison of the
strength of suppression in the data with that measured in the model
for different strengths of horizontal and feedback excitation of
inhibitory neurons. We found that the parameter regime that can
best describe both the near and far surround suppression data
includes direct and strong feedback excitation of inhibitory neurons,
coupled to weaker horizontal connections than in the original model.
However, additionally or alternatively, the stronger inhibition needed
in the model to account for the near surround data could arise from
surround suppression of LGN afferents, which ismissing in the current
version of our model. We are currently testing this hypothesis.
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