
Article
Sequential sampling from
 memory underlies action
selection during abstract decision-making
Highlights
d Monkeys made perceptual decisions without knowledge of

the action to report them

d Decision formation was postponed until the relevant motor

actions were revealed

d Perceptual information was sequentially sampled from

memory for decision formation

d Neurons in area LIP represent accumulating evidence

sampled from short-term memory
Shushruth et al., 2022, Current Biology 32, 1–12
May 9, 2022 ª 2022 The Author(s). Published by Elsevier Inc.
https://doi.org/10.1016/j.cub.2022.03.014
Authors

S. Shushruth, Ariel Zylberberg,

Michael N. Shadlen

Correspondence
shushruth@gmail.com (S.S.),
ariel.zylberberg@gmail.com (A.Z.),
shadlen@columbia.edu (M.N.S.)

In brief

Shushruth et al. investigate howmonkeys

make visual decisions before the actions

to report their choice are specified.

Monkeys do not make a decision while

viewing the stimulus but wait until the

actions are revealed. Neurons in parietal

cortex accumulate visual information

stored in short-term memory to decide

which action to take.
ll

mailto:shushruth@gmail.com
mailto:ariel.zylberberg@gmail.com
mailto:shadlen@columbia.edu
https://doi.org/10.1016/j.cub.2022.03.014


OPEN ACCESS

Please cite this article in press as: Shushruth et al., Sequential sampling from memory underlies action selection during abstract decision-making,
Current Biology (2022), https://doi.org/10.1016/j.cub.2022.03.014
ll
Article

Sequential sampling from memory underlies
action selection during abstract decision-making
S. Shushruth,1,* Ariel Zylberberg,1,* and Michael N. Shadlen1,2,3,4,5,*
1Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, New York, NY 10027, USA
2Howard Hughes Medical Institute, New York, NY 10027, USA
3Kavli Institute, Columbia University, 612 West 130th Street, New York, NY 10027, USA
4Twitter: @shadlen
5Lead contact

*Correspondence: shushruth@gmail.com (S.S.), ariel.zylberberg@gmail.com (A.Z.), shadlen@columbia.edu (M.N.S.)

https://doi.org/10.1016/j.cub.2022.03.014
SUMMARY
The study of perceptual decision-making in monkeys has provided insights into the process by which sen-
sory evidence is integrated toward a decision.Whenmonkeysmake decisions with the knowledge of themo-
tor actions the decisions bear upon, the process of evidence integration is instantiated by neurons involved in
the selection of said actions. It is less clear how monkeys make decisions when unaware of the actions
required to communicate their choice—what we refer to as ‘‘abstract’’ decisions. We investigated this by
training monkeys to associate the direction of motion of a noisy random-dot display with the color of two tar-
gets. Crucially, the targets were displayed at unpredictable locations after the motion stimulus was extin-
guished. We found that the monkeys postponed decision formation until the targets were revealed. Neurons
in the parietal association area LIP represented the integration of evidence leading to a choice, but as the
stimulus was no longer visible, the samples of evidence must have been retrieved from short-term memory.
Our results imply that when decisions are temporally unyoked from the motor actions they bear upon, deci-
sion formation is protracted until they can be framed in terms of motor actions.
INTRODUCTION

A decision is a commitment to a proposition or plan of action

based on evidence, prior knowledge, priorities, and value.

Perceptual decision-making refers to the class of decisions in

which the dominant source of evidence is derived from sensation

and in which the decision is a provisional action or a mental

assignment to a category. Viewed from the perspective of

information processing, perceptual decision-making establishes

a compressed distillation of sensory data into distinct cate-

gories. Viewed from the perspective of behavior, it effects an

intention, satisfying policy objectives, such as obtaining reward.

These perspectives are naturally connected because we decide

about a perceptual category to make a choice. The study of

decision-making in laboratory animals tends to conflate these

depictions, perhaps by necessity.

There is recent interest in characterizing the neural processes

that underlie decisions about category membership, independent

of intention,1–4 which we will refer to as abstract decisions. Cate-

gorical labels introduce flexibility to sensorimotor programs.5,6

For example, one can assign the labels, ‘‘A’’ and ‘‘B’’ or ‘‘right-

ward’’ and ‘‘leftward’’ to consolidate motion perceived to the right

or left, irrespective of its precise direction or motion strength.

These abstract labels then allow for the implementation of flexible

action plans, such as ‘‘press a red button if you see rightward

motion.’’

The extent to which nonhuman primates can assign abstract

labels to sensory percepts and exploit them to be flexible in their
Current Biology 32, 1–
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actions is unclear. The process of abstraction, by definition,

unyokes the sensory evaluation processes from the process of

acting on the sensory information. However, multiple lines of

research in macaques suggest that the process of sensory

evaluation is intimately coupled to the actions that can result

from the evaluative process.7–9 This framework, wherein

cognitive processes are embodied in terms of the motor actions

they afford, is supported by the patterns of neural activity

found in association and premotor cortices of monkeys.7,10,11

However, monkeys can be trained to decide on properties of

sensory stimuli even when unaware of the motor action required

to report their decision.1,2,4,12–17 In these studies, monkeys were

required to commit to a category assignment without committing

to an action. It is unclear from these studies how the abstract

representation is established and how it is ultimately translated

to the response. That is what we set out to clarify.

We trained two monkeys to decide on the net direction of

stochastic random-dot motion (RDM) and associate two possible

directions with two colors. The monkeys reported the direction of

motion by making an eye movement to the target of the associ-

ated color, but these targets were revealed at unpredictable loca-

tions after themotion stimulus had been extinguished. To perform

the task well, monkeys needed to integrate motion information in

the stimulus over time to make an abstract decision about the di-

rection of motion. This imposition allowed us to investigate how

an abstract perceptual decision is formedwhen the actions asso-

ciated with the decision are yet to be specified. Furthermore,

since the decision-making phase is unyoked from the motor
12, May 9, 2022 ª 2022 The Author(s). Published by Elsevier Inc. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Behavioral task

Themonkey fixates at an instructed location (red dot). After a delay, a random-dotmotion stimulus appears around the fixation point. The stimulus terminates after

a variable duration (350–800ms). After another short delay (200–333ms), a blueandayellow target appear at unpredictable peripheral locations. In the ‘‘go’’ version

of the task (top panel), the fixation is extinguished at the time the targets appear, and themonkey can report the decision by choosing one of the colored targets. In

the ‘‘wait’’ version of the task (bottom panel), themonkeymust wait until the fixation point is extinguished before choosing a target. During recording sessions, the

target locationsoneach trial arepseudorandomly chosen froma restrictedset of locationsbasedon the receptive field of theneuronbeing recorded. The unchosen

locations are illustrated by dashed gray circles (not shown to the monkey). During training sessions, the target locations were less constrained.
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planning phase, the task also permits investigation of the conver-

sion of an abstract decision to an action.

Surprisingly, we found that evidence evaluation and action

selection—the two aspects of abstract decision-making that

our task was supposed to unyoke—were, in fact, intimately

coupled. The behavior of the monkeys showed that they based

their decision on motion evidence integrated over time.

However, this integration transpired during the action-selection

epoch instead of the epoch when the evidence was presented.

Furthermore, activity of neurons in the sensorimotor association

area LIP represented decision formation during the action-selec-

tion epoch. Our results suggest that monkeys form abstract

perceptual decisions by evaluating sensory information from

iconic short-term memory18 for action selection.

RESULTS

We trained two monkeys (monkey-AN and monkey-SM) to

decide whether the net direction of a RDM stimulus was to the

right or left. The monkeys reported their decision by making an

eyemovement to a blue or yellow target based on the association

they had learned between the direction of motion and target

colors (Figure 1). The two targets appeared after a short delay

(200–333 ms) following the termination of the motion stimulus,

and the locations of the two targets were randomized across

trials. Thus, all the evidence bearing on the decisionwas supplied

before the monkeys were instructed about the motor act that

would be required to report the decision. Unlike previous

studies,12,14 both monkeys were naive to the RDM stimulus

when they began training on the task. Since one of our goals

was to investigate howdecisions are converted tomotor actions,

the monkeys were allowed to report the decision as soon as the

targets were presented (go-task). Monkey-SM was also trained

on a variant of the task in which an additional waiting time was

imposed after the appearance of the targets (wait-task).
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The abstract decision-making task proved to be challenging

for the monkeys to learn (Figure S1). Monkey-AN required 28

sessions to acquire the motion-color association and failed to

improve beyond competency at the highest motion strengths

for the next �40 sessions (�50,000 trials). Only then did the

monkey begin to exhibit gradual improvement, quantified by a

reduction in psychophysical threshold—the motion strength

required to support accuracy greater than 75% correct

(Equation 1). Monkey-SM learned the motion-color association

quickly but made little progress over months of training. After

127 sessions (983 trials per session on average), the thresholds

still hovered around 25% coherence. This monkey was then

trained on the wait variant of the task for an additional 58

sessions (740 trials per session) until the thresholds decreased

and stabilized at �11% coherence.

By the final training session, both monkeys performed the task

above chance for all non-zero motion coherences (Figures 2A

and 2B), although they made errors on the easiest motion

strength. Such asymptotic performance is commonly

interpreted as a sign that the decision-maker lapses (e.g.,

guesses) on a fraction of all trials. The lapse rates were 9%

and 11% of trials for monkeys AN and SM, respectively.

Monkeys performing the same direction discrimination task

with a direct mapping between motion direction and actions

typically exhibit lapse rates under 2%, further attesting to the

challenging nature of the present task, even after extensive

training. Nonetheless, for the vast majority of trials, both

monkeys used evidence from the RDM to choose the

appropriate color. This was confirmed using psychophysical

reverse correlation, which identifies the times that random

fluctuations of information in the random-dot stimulus influence

the decision. The analysis reveals that monkeys AN and SM

based their decisions on information acquired over 357 and

261 ms, respectively (Figures 2C and 2D). Importantly, the influ-

ence ceases at least 350 ms before the color targets appear.
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Figure 2. Color choices are governed by the

strength and direction of motion

(A) Effect of motion strength on decisions for mon-

key-AN on the go-task. Monkey-AN was trained to

associate blue with rightward and yellow with left-

ward motion. The proportion of blue (rightward)

choices are plotted as a function of signed motion

strength (rightward motion is positive signed).

Curves are logistic regression fits to the data. Error

bars are SE.

(B) Effect of motion strength on decisions for mon-

key-SM on the wait-task. Monkey-SM was trained

to associate yellow with rightward and blue with

leftwardmotion. The proportion of yellow (rightward)

choices are plotted as a function of signed motion

strength. Otherwise, same conventions as in (A).

(C and D) The influence of fluctuations in motion

information on choices plotted as a function of time

from motion onset. Curves represent the mean

motion energy in support of the direction chosen by

the monkey on 0% coherence trials (shading, ± 1

SEM).
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Action selection during abstract decision-making is a
deliberative process
The behavioral task is structured to separate the decision-

making epoch from the action-selection epoch. The natural

expectation is that the monkey decides about the direction

of motion in the random-dot display while it is visible and is

thus prepared to make an eye movement to the blue or yellow

target once they are displayed (Figure 3, Strategy 1). If so, the

action-selection epoch would involve a simple translation of

the decision into an eye movement. This should take as little

as 200 ms—the amount of time required to search for a

colored target accompanied by a single highly discriminable

distractor.19–21 Unexpectedly, we found that both monkeys

required a prolonged action-selection epoch to integrate

motion evidence toward a decision. Given that only the

two-colored targets were visible during this epoch, we

hypothesized that monkeys could be using this time to sample

information stored in memory to render their decisions (Fig-

ure 3, Strategy 2). Behavioral results from monkeys AN and

SM provided distinct but complementary insights into the

deliberative process. We next proceed to describe them

separately, followed by the data from neural recordings, which

were strikingly similar.

Monkey-AN: Prolongation of go-RTs

Monkey-AN showed a natural inclination to deliberate after the

appearance of the targets. Figure 4A displays the proportion of

blue choices (bottom) and their associated response times

(go-RT, top) as a function of motion strength and direction.

The RTs, measured from onset of the colored choice targets

(at least 300 ms after the motion stimulus was extinguished),

were 2–4 times slower than expected21 if the decision had

beenmade during the motion-viewing epoch (Figure 3 [strategy

1]). The averages range from 440 ms for the easiest condition

to 771 ms for the most difficult, and they exhibit a clear

dependency on the strength and direction of motion. The

range of go-RTs between easiest to most difficult blue

choices and the range between easiest to most difficult

yellow choices is an order of magnitude longer than the
range associated with changes in reward expectation or confi-

dence (typically <20 ms; e.g., Gold and Shadlen12). The depen-

dency of go-RT on motion strength resembles the pattern of

response times—relative to onset of the RDM—seen in earlier

studies, where monkeys were free to indicate their saccadic

choices to targets that were already present during motion

viewing.23

We therefore considered the possibility that the pattern of go-

RTs might result from sequential sampling of evidence experi-

enced earlier in the trial, that is, from memory (Figure 3, Strategy

2). To evaluate this, we appropriated a bounded evidence-accu-

mulation model (drift-diffusion) that is known to reconcile the

choice proportions with the response times of subjects when

they are allowed to answer whenever ready. In such ‘‘free

response’’ tasks, the decision-maker knows how to answer while

viewing themotionandsimplystops the trial bypushingabuttonor

making an eye movement to one of two visible targets. We

wondered if the same type of model could reconcile the choices

and go-RTs of monkey-AN.

The curves in Figure 4A are fits of a bounded drift-diffusion

model to the proportion of blue choices and the mean go-RTs.

The simplest version of this model assumes that the drift

rate is proportional to signed motion coherence and the

terminating bounds do not change as a function of time.24 Any

bias is accommodated by an offset to the drift rate.25 The

mean go-RT for each signed motion strength is predicted by

the expectation of the bound termination times plus a constant

nondecision time, which captures contributions to the RT that

do not depend on the motion strength and bias. We used sepa-

rate terms (tbnd and tynd) to describe the faster blue and slower yel-

low choices. The model to this point uses only five degrees of

freedom to explain the choice proportions and mean go-RT

across 11 motion strengths (Equations 3 and 4).

We incorporated one additional feature to accommodate the

failure of monkey-AN to achieve perfect performance on the

easiest conditions ( ± 64% coh). Such errors are typically

attributed to lapses in which the subject ignores the evidence

and guesses. However, we noticed that the go-RTs associated
Current Biology 32, 1–12, May 9, 2022 3
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Figure 3. Putative strategies

Schematic of strategies that monkeys could adopt to solve the task. Strategy 1: during motion viewing, evidence for motion direction is accumulated to decide if

the motion is to the right or left. The result of the decision about direction and/or its color association is stored. When the colored targets are presented, the

previously made decision guides an immediate saccade to the target with the chosen color. The saccadic latency might vary by 10–20 ms as a function of

confidence in the decision. Strategy 2: during motion viewing, the experienced evidence is stored in short-term memory. When the targets are shown, the stored

evidence is evaluated during action-selection to decide which of the two-colored targets to choose. The drawing gives the impression of many samples, but the

samples themselves might represent several tens of ms of motion information (as in Kang et al.22).
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with errors on the strong leftward-motion condition (blue

choices) had the slow go-RTs associated with correct left-

ward-motion (yellow) choices. Similarly, the errors associated

with the strong rightward-motion condition (yellow choices)

had the fast go-RTs associated with correct rightward-motion

(blue) choices (Figure S2B). This indicates that the lapses were

not guesses but an error in the association between direction

and color (Data S1). We accommodated this feature in the

model, assuming that this type of error occurred on a small frac-

tion of trials, independently of motion strength (STAR Methods).

The model captures the coherence dependence of the go-RTs

on correct choices (R2 = 0:99) while also accounting for the ac-

curacy of themonkey’s choices (Figure 4A). The fidelity of the fits
4 Current Biology 32, 1–12, May 9, 2022
supports the hypothesis that the prolonged go-RTs reflect a

bounded accumulation of noisy evidence leading to the

rendering of the decision. As this sampling began at least

300 ms after the motion stimulus was extinguished, the samples

must be derived from memory.

Because drift-diffusion models with time-independent (i.e.,

"flat") bounds cannot explain the difference in response times

between correct and error choices at a given motion strength,

we considered a more elaborate version of the model to explain

the go-RTs on errors. The model incorporates decision-termina-

tion bounds that can changewith elapsed time (Equation 11; Fig-

ure S2A). We fit the extended model to the choice and go-RT

data, including the go-RTs on errors. The best-fitting model



0 200 400
Time from motion onset (ms)

400

600

800

go
-R

T
 (

m
s)

p 
(y

el
lo

w
 c

ho
ic

es
)

0

0.5

1

p 
(b

lu
e 

ch
oi

ce
s)

A B

C

0

M
ot

io
n 

en
er

gy
 (

a.
u.

)

wait-task
go-task

Monkey AN Monkey SM 

-60 -40 -20 0 20 40 60

Motion strength (% coh)

N = 506 trials

-60 -40 -20 0 20 40 60

Motion strength (% coh)

0

0.5

1

Figure 4. Deliberation during action selection

(A) (Top) Go-RTs ofmonkey-ANplotted as a function

of signed motion coherence. Error bars are SEM.

Curves are fits to a bounded drift-diffusion model.

The model is also constrained by the choice pro-

portions. (Bottom) Same data as in Figure 2A. Curve

is the fit of the bounded diffusion model, which ac-

counts for both the choice proportions and the go-

RTs. Table S2 shows the best-fitting model param-

eters. See also Figure S2 and Data S1.

(B) Proportion of rightward (yellow) choices as a

function of motion strength for monkey-SM from the

last four training sessions on the go-task (green;

see Figure S1). The same data as Figure 2B are

shown for comparison (black). Lines are logistic

regression fits to the data.

(C) Influence of motion fluctuations on choice in the

last four training sessions of the go-task for monkey-

SM (green curve). Same conventions as Figure 2D.

Data from the wait-task (black curve, same as in

Figure 2D) are shown for comparison.

See also Figure S3.
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(Figure S2) yields an expectation of the integration time for each

motion strength. For 0% coherence, the expectation is 243 ms,

which is consistent with the psychophysical reverse-correlation

analysis above (Figure 2C). Note that the reverse-correlation

analysis also shows that the monkey uses the earliest epochs

ofmotion evidence to inform its decision. Taken together, the an-

alyses of go-RT and reverse correlation suggest that monkey-AN

stores at least 300 ms of information about the motion in some

form. The estimate is longer than the expectations because the

duration of stimulus information needed for decision termination

is not known before the accumulation process transpires.

Monkey-SM: Improved integration after enforced wait

Unlike monkey-AN, monkey-SM did not show a tendency to

deliberate after target onset in the go-version of the task.

However, although monkey-SM learned the direction-color

association and performed better than monkey-AN at the

strongest motion conditions, it failed to achieve proficiency on

the more difficult conditions (Figure S1). Even after extensive

training, sensitivity plateaued at an unacceptable level (Figure 4B

[green]), and psychophysical reverse correlation revealed only a

weak, transient impactofmotion informationonchoice (Figure4C

[green]). We therefore suspected that this monkey based its

decisions on a brief sample of information from the first, last, or

random glimpse of the display (e.g., see Stine et al.26). We

confirmed this using a variant of the go-task in which the strength

of motion was modulated as a function of time within a trial (Fig-

ure S3). The coherence started at 0% and either stepped or

changed gradually to a large positive or negative value. The

time of the step or the rate of change varied across trials. The

monkey’s performance deteriorated to chance when the strong

motion was concentrated at the end of the trial (Figure S3). We

deduced that themonkey based its decisions onmotion informa-

tion sampled over a short time window at the beginning of the

trial. Not surprisingly, the go-RTs exhibited no sign of delibera-

tion. They were nearly as fast as a simple saccadic reaction
time to a single target (192± 0:4 ms) and showed no influence

of the previously experienced motion strength.

Based on our experience with monkey-AN, we wondered if

monkey-SM failed to integrate after the color-choice targets

appeared. We therefore introduced a wait time after the onset

of the targets. This simple modification led to a 2-fold improve-

ment in sensitivity (Figures 4B [green versus black traces] and

Figure S1). This degree of improvement would require at least

a 4-fold increase in the number of independent samples of

evidence the monkey used to form its decision. Indeed,

psychophysical reverse correlation revealed a longer time

window over which motion information influenced decisions:

from 40 ms, before the introduction of the enforced wait, to

261 ms, after �40 sessions of training (Figure 4C). Thus, the

imposition of a wait after the onset of the targets encouraged

monkey-SM to use more information to inform its decision—in-

formation that was acquired earlier in the motion-viewing epoch.

The behavioral data from both the monkeys therefore

provide complementary evidence that deliberation during the

action-selection epoch is necessary for integrating previously

observed motion information. During motion viewing, both mon-

keys must store some representation of the motion in short-term

memory. The go-RTs from monkey-AN indicate that the stored

information is sampled sequentially in the action-selection

period. Owing to the enforced wait, we lack meaningful go-RTs

for monkey-SM. However, as we next show, the neural record-

ings demonstrate that monkey-SM also samples sequentially

from memory during the action-selection epoch.

LIP neurons represent the accumulation of evidence
from memory
We recorded from single units with spatially selective persistent

activity in area LIP.27,28 Such neurons are known to represent an

evolving decision variable—the accumulated evidence for and

against a motion direction—when one of the choice targets is
Current Biology 32, 1–12, May 9, 2022 5
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Figure 5. LIP activity during motion viewing and target selection

The graphs show average normalized responses as a function of time aligned to motion onset or target onset. Data from the two monkeys are shown separately

(left, AN, 29 neurons; right, SM, 31 neurons).

(A and D) Responses aligned to motion onset. All trials are included.

(B, C, E, and F) Data from trials in which the blue (B and E) or yellow (C and F) target were in the neuronal response field. The responses are aligned to the onset of

the target. In (B) and (C), traces extend until at least 33% of the trials have not terminated. Insets show residual responses after removal of the large visual

response to the target. They isolate the component of the response that is controlled by the strength and direction of motion. In all panels, coherences are

grouped as high (±64% and ±32%), medium (±16%), low (±8% and ±4%), and 0%. Grouping of the direction of motion (for coherences s0%) is based on the

preferred color-motion association for each neuron. This was consistent with the association the monkey had learned between motion direction and target color,

except for six neurons in monkey-SM for which the association was reversed (see STAR Methods). The responses aligned to saccade are shown in Figure S4.
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in the neural response field (RF).23,29 The present study differs

from previous reports in two critical aspects: (1) the choice

targets were not visible during motion viewing, and (2) the

locations of the choice targets were unpredictable. Under these

conditions, the neural responses accompanying motion viewing

were only weakly modulated by motion strength in monkey-AN

(Figure 5A) and unmodulated in monkey-SM (Figure 5D).

The action-selection epoch begins with the appearance of the

color-choice targets. When a target was in the neural RF, it

elicited a strong visual response beginning �50 ms after onset

(Figures 5B, 5C, 5E, and 5F), consistent with previous reports.30

The subsequent evolution of the response reflected both the

strength and direction of the RDM stimulus that had been

presented in the previous epoch. To better visualize the

relationship between the neuronal response and the previously

presented RDM stimulus, we removed the visual response

(STAR Methods). The residual responses (Figures 5B, 5C, 5E,

and 5F [insets]) were effectively detrended with respect to any

influences that were unaffected by the strength and direction

of motion. The residual responses exhibit a clear dependency

on the strength and direction of the RDM.

To quantify the rate of change of residual responses (buildup

rate), we identified the time at which the raw responses first

diverge. For each neuron, we then computed the buildup rate

for each coherence as the slope of a line fit to the average of

the residual firing rates. Each point displayed in Figure 6 is the

mean buildup rate across neurons. These buildup rates exhibited

a linear dependence on motion strength. For monkey-SM, the

linear dependence was statistically significant in all four
6 Current Biology 32, 1–12, May 9, 2022
conditions (i.e., for all combinations of direction of motion and

color of target in the RF; Table S1). For monkey-AN, the linear

dependence was statistically significant in three of the four

combinations of motion and direction (p<0:05, Table S1). The

buildup rates are comparable with those obtained when the

motion is viewed in the presence of saccadic choice targets

(e.g., see Figure 3G in Shushruth et al.31).

Thus, for both monkeys, the neural responses during action

selection exhibit the hallmark of a decision variable, which

must be informed by evidence acquired earlier. This is consistent

with the pattern of go-RTs in monkey-AN, which also supports

sequential sampling of evidence during the action-selection

epoch. Analyses of the time-dependent changes in response

variance and autocorrelation lend additional support for

sampling of noisy evidence from memory in both monkeys.

The coherence dependent ramping evident in trial-averaged

response residuals could reflect the deterministic component of

evidence accumulation—a rampwith slope equal to the statistical

expectation of themomentary evidence for yellow or blue. On sin-

gle trials, theoretically, the decision variable also includesanaccu-

mulation of noise. This is the diffusion component of drift-diffusion,

which is thought to explain stochasticchoiceandvariabledecision

times. Although suppressed in the trial averages, the diffusion

component can be detected in the evolution of the variance

and autocorrelation of the neural firing rates (variance and correla-

tion of the conditional expectation: VarCE and CorCE, respec-

tively31–33; STAR Methods; Equations 12, 13, 14, 15, and 16).

We computed the VarCE across trials in the epoch of putative

accumulation (coincident with the time of the buildup). The
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Figure 6. Buildup of neural activity depends

on the strength and direction of motion

Buildup rates were estimated for each neuron, using

trials with the same motion strength, direction, and

color-target in the response field (top, monkey-AN;

bottom, monkey-SM). Symbols are averages across

neurons (error bars are SEM) The lines in the graph

are weighted least square fits to the average buildup

rates, grouped by motion direction. The 0% coher-

ence point (gray) is included in both weighted re-

gressions in each panel.

See also Table S1.
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VarCE underwent a linear increase as a function of time over

most of this epoch (Figures 7A and 7F). This is the pattern

expected for partial sums (i.e., accumulation up to time, t) of

independent samples of noise. The autocorrelation of the

responses (CorCE) also showed signatures of a diffusion

process: a decrease in autocorrelation as a function of the

time separation between the bins (i.e., lag), and an incre-

ase in autocorrelation between adjacent bins as a function

of time (Figures 7C, 7E, 7H, and 7J). The estimated

autocorrelation pattern for both monkeys hewed closely to the

theoretical predictions (Figures 7D [R2 = 0:84, monkey-AN]

and 7I [R2 = 0:89, monkey-SM]). Such conformance lends

further support for the conclusion that evidence integration in

both monkeys occurs in the action-selection epoch. Indeed,

the same analyses applied to the neural responses in the

motion-viewing epoch fail to conform to the theoretical

predictions of diffusion (i.e., integration of noisy evidence)

(R2 = 0:45, monkey-AN; R2 = 0:26, monkey-SM; Figure S5).

This was already obvious from the response averages in

Figures 5A and 5D. The demonstration of a dynamic process

of evidence accumulation during the action-selection epoch

rules out the possibility that the LIP activity in the action-selec-

tion epoch is simply a reflection of confidence in a decision

that was made during motion viewing. If so, the neural

activity in the action-selection epoch should not represent the

accumulation of noisy evidence.

Importantly, analyses of the neural responses support the

thesis that both monkeys form their decisions in the action

selection epoch. Moreover, they do so through the accumulation

of noisy samples of evidence to a threshold. The strategy is

strikingly different from the previous studies12,14 and it is all the

more remarkable because it holds across two variants of the
task. Below, we consider the reasons why

our monkeys postpone decision-making

until the action selection. The fact that

they do implies that their decisions are

guided by evidence stored in short-term

memory. This conclusion is at least equal

in importance to the deferment of the deci-

sion process until action selection.

DISCUSSION

The study of perceptual decision-making in

monkeys has provided insights into the
process by which sequential samples of sensory evidence are

accumulated over time.29,34 A peculiar observation in these

studies is that the accumulation of evidence is instantiated by

neurons associated with motor planning.23,33,35–37 This observa-

tion has led to the proposal that perceptual decision-making is

embodied as a choice between potential actions.7,8 Yet, mon-

keys can make perceptual decisions when they are unsure of

the action that will be required of them to report their deci-

sion.12,14–17 We investigated how monkeys accumulate sensory

evidence under these circumstances, using monkeys that had

never learned an association between the decision and the ac-

tion to report it. The monkeys learned to associate leftward

and rightward motion with the color of choice targets, which ap-

peared at unpredictable locations after motion viewing.

We had anticipated that they would not represent evidence in

the form of an oculomotor plan but rather as a plan to choose the

appropriate color. Instead, we found that the monkeys formed

their decisions after the color-choice targets appeared—that

is, during the period of action selection—after the source of sen-

sory evidence had been extinguished. Bothmonkeys based their

decisions on samples of evidence that must have been retrieved

from short-term memory. Monkey-AN developed this strategy

spontaneously; monkey-SM did not, but it appears to have

adopted this strategy once we imposed a second waiting period

during the action-selection epoch. The striking change was

evident in the longer time span of stimulus information used to

inform decisions (Figure 4C) to achieve a level of proficiency

comparable with monkey-AN and many others we have trained

on direction discrimination tasks. The go-RT from monkey-AN

exhibited one peculiar feature. The difference in nondecision

times for blue and yellow choices was nearly as long as the entire

range of go-RT for either choice. In Data S1, we show that the
Current Biology 32, 1–12, May 9, 2022 7



A B C

D

F

E

G H

I J

Figure 7. Variance and autocorrelation of decision-related neural responses during action selection
The analyses depicted here evaluate predictions that the neural activity during action-selection epoch on single trials includes a representation of accumulated

noise.

(A and F) Variance of neural responses aligned to target onset. Filled symbols are estimates of the variance of the conditional expectations (VarCEs) of the spike

counts in 60 ms bins spanning the putative integration epoch. Error bars are SE.

(B and G) Theoretical correlations between the cumulative sums of independent, identically distributed random numbers from the 1st to ith and from 1st to jth

samples. The unique values of the correlation matrix are displayed as an upper triangular matrix. The horizontal solid line shows the correlation between the first

(legend continued on next page)
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asymmetric go-RTs are explained by a model in which the

monkey makes two decisions in series22 but is willing to

terminate with a blue choice if there is sufficient evidence.

For both monkeys, however, neural recordings from area LIP

provided further confirmation that a sampling process transpired

during the action-selection epoch. On trials when one of the

color-choice targets appeared in the neural RF, it produced a

visual response plus a signal reflecting the direction and strength

of the previously presented motion. The time course of the

evolution was characteristic of an integration process—more

specifically, the integration of noisy evidence acquired from the

stimulus. Although the memory requirements for the protracted

integration of evidence may seem daunting, in Data S1, we

show that it is not necessary to ‘‘replay’’ the entire sequence of

evidence samples during the action-selection epoch; instead,

storing a few samples of evidence is sufficient to achieve high

levels of accuracy in the task (see also Kang et al.22).

A common strategy to dissociate a decision from a plan of

action exploits the delayed match-to-sample design,1 wherein

a subject evaluates a sample stimulus and then, after a short

delay, is presented with a second stimulus, which is compared

with the first and classified as the same or different. It is assumed

that the subject forms a decision about the identity or category

membership of the sample before the test stimulus is presented

and holds the outcome of this categorical decision in working

memory. Using this approach, it has been shown that monkeys

can report whether the test and sample belong to the same

category1,2,4,38 or share similar properties, such as magnitude,39

numerosity,40 or speed/direction.41 These studies focus mainly

on neural activity in association cortex during the sample and

delay periods. This activity often varies systematically with the

relevant properties of the sample stimulus and is thus interpreted

as a decision that is independent of any planned action. Our

results suggest an alternative interpretation. Instead of process-

ing the sample stimulus to make a decision about category, it is

processed as an instruction to brain circuits that organize the

response to the test stimulus. The instruction might establish a

criterion to classify the test, or it might establish the appropriate

sensory-response mapping. Such a mechanism has been

documented in a simple olfactory delayed match-to-sample

task in mice.42 It does not require deciding about the sample;

it requires enacting a memory, cued by the sample, of the

appropriate sensory-response mapping between test stimulus

and behavioral response.

Two earlier studies of abstract perceptual decision-making

used tasks similar to ours but reached the opposite conclusion.

The task in the Gold and Shadlen study12 was nearly identical to

ours, but their monkeys failed to exhibit any signs of deliberation
sample and the cumulative sum to the jth sample (lag = j� i). It shows decreasing

set of correlations between pairs with the same lag = 1. It shows an increase in

(C and H) Correlations estimated from the neural response. These are the correla

bins i and j. If the rates on single trials are determined by unbounded drift-diffusion

juxtadiagonal are identified as in (B) and (G).

(D and I) Deviance of the estimated correlations from theoretical correlations (su

(E and J) Comparison of theoretical and estimated correlations in the top row and

theoretical values in (B) and (G). Black lines connect the CorCE values in (C) and (H

and first juxtadiagonal (correlations of neighboring bins as a function of time).

See also Figure S5.
in the action-selection epoch. The saccadic latencies were

�200 ms from color-target appearance, suggesting the

monkeys had formed their decision about the color rule before

the targets appeared. The only salient differencewith the present

study is that their monkeys had been trained previously to

associate motion with eye movements to targets. We suspect

that having learned to accumulate evidence for motion as an

evolving plan to make a saccade, they were able to form a

decision in another intentional way—for color rule instead of

target location. A similar explanation applies to the study by

Bennur and Gold.14 Their monkeys made decisions in the

presence of saccadic choice targets. In the version of their

task that resembles ours (their version 3), the monkeys were

required to associate left and right motion with up and down

targets or with down and up targets, depending on the target

color cued after the motion had been shown. Decision-related

changes in LIP activity were apparent during motion viewing

and before the action-selection epoch. As in the Gold and Shad-

len study,12 the monkeys had been trained on a direct associa-

tion between direction and an action and thus required only a

slight elaboration: to switch the stimulus-response associations

in accordance with the color cue.

Our result was anticipated by Wang and colleagues,15 who

used a spatial integration task with separate evaluation and

action-selection epochs. The task structure used for one

monkey resembles our go-task. It imposes a delay between

the extinction of a static discriminandum and the presentation

of the choice options. Similar to our monkey-AN, their

monkey-T exhibited go-RTs that depended on the strength of

the evidence experienced beforehand. They also report that

the rate of rise of neuronal responses in Area PMd during action

selection was dependent on stimulus strength. The Wang study

also supports the hypothesis that sampling of evidence from

memory may be necessary to form a perceptual decision when

the evidence is provided before it is possible to accommodate

it in an intentional context.

The near limitless capacity for abstraction in humans gives an

impression of disembodied ideation. Humans can evaluate

propositions about the world—what things are and what cate-

gories they belong to—without using them as objects of possible

action. An alternative formulation, rooted in ecological

perception,43 suggests that knowledge of the environment is in

the service of what we might do in the form of considerations

and intentions.44,45 One activity humans pursue is reporting to

other humans. The conversion of a provisional report to an

action, such as ‘‘look at the blue spot if the motion is rightward,’’

permits humans to form a decision before the action is specified.

The same logical structure applies to what monkeys—previously
correlation as a function of lag. The dashed line identifies the first juxtadiagonal

correlation as a function of time of the pairs of samples.

tions between the conditional expectation of the spike counts (CorCEs) in time

, these correlations should match the values in (B) and (G). The top row and first

m of squares measure).

first juxtadiagonal of the matrices in (B), (G), (C), and (H). Gray traces show the

). Line and symbol styles distinguish the top row (correlation as a function of lag)
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trained to associate rightward/leftward motion with an eye

movement to the right/left—can achieve in abstract decision

tasks similar to ours. If humans are not informed about the axis

of discrimination until after the motion has been viewed, then

similar to the monkey, humans too must rely on memory.46

Further, studies of iconic short-term memory demonstrate

that such memory can be formed strategically to anticipate

knowledge of the operations that may be required.18,47,48 Thus,

both monkeys in our task must have learned to store the

appropriate motion information in short-term memory buffers

to enable action selection based on the colors of the choice

targets. The site of such buffers is unknown, but there is literature

to suggest sensory areas, such as MST49 and prefrontal

cortex,41,50 as possible candidates. It is also possible that LIP

neurons with RFs that overlap the RDM play a role, as they are

known to exhibit direction selectivity.2,51

The difficulty that our abstract decision task poses for

naive monkeys might raise concerns about the relevance of

our finding to human cognitive function. The abstract decision

in our task requires the animal to either (1) build a hierarchical

decision in which the outcome of themotion decision substitutes

for the colored object to instruct the blue-yellow choice or (2)

store evidence from motion to resolve the subsequent color

choice. The hierarchical strategy is the one humans appear to

exercise, as the effect of the strength of evidence on go-RTs is

minimal in human subjects.52,53

At first glance, the hierarchical strategy might appear to be

the more sophisticated of the two. It is more complex, and

the nested structure seems similar to a building block for

language. However, the second strategy also connects to a

sophisticated element of cognition: the capacity to use recent,

but temporally non-adjacent, information to guide a decision.

This is critical for learning causal relations, and it too plays a

role in language. We make strategic use of short-term memory

to store semantic content (analogous to samples of evidence),

which we incorporate in locution later—analogous to action

selection—in accordance with syntactic demands. The process

is embarrassingly vivid when we lose the train of our thought.

Such embarrassment is mitigated by the strategic use of short-

term memory, adhering to the old adage, ‘‘put your mind in

gear before you put your mouth in motion’’ (A. Shadlen, personal

communication).

Clearly, expressions of perceptual decisions through eye

movements and expressions of ideas through language invite

more contrast than comparison, but the structural similarity

may prove useful for neurobiology. Thus, it is that the monkey’s

crude approximation to abstract decision-making elucidates a

critical building block of our own ideation.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All training, surgery, and experimental procedures were conducted in accordance with the Public Health Service Policy on Humane

Care and Use of Laboratory Animals. Experiments were approved by the Columbia University Institutional Animal Care and Use

Committee (IACUC) under protocol number AC-AAAW4454. Two adult macaque monkeys (one 12 year old female, AN; one

9 year old male, SM) were used as subjects in this study.

METHOD DETAILS

Behavioral task
The monkeys performed a behavioral task in which they decided whether the net direction of a stochastic random-dot motion (RDM)

stimulus was to the left or right. The animals initiated trials by fixating on a point (fixation point; FP) presented on an otherwise black

screen. The RDM stimulus was then presented within a circular aperture (radius 2:5+ or 3+) centered on the FP. The first three frames

of the stimulus consist of white dots randomly plotted at a density of 16:7 dots,deg�2,s�1. From the fourth frame, each dot from three

frames before is replotted—either displaced to the right or left, or at a random location. The probability withwhich a dot is displaced to

the right or left determines the stimulus strength (coherence; C) and on each trial, C was randomly chosen from the set f0; ±0:04;

±0:08; ±0:16; ±0:32; ±0:64g, the positive sign indicating rightward motion. The motion strengths and the two directions were

randomly interleaved. The stimulus was presented for a variable duration drawn from a truncated exponential distribution (range

350–800 ms, mean 500 ms). Two targets, one blue and one yellow, were presented after a short delay (333 ms, monkey-AN;

200 ms, monkey-SM) at eccentric locations that varied across trials. The monkeys had to report the perceived direction of

motion by choosing the target of the associated color (blue for rightward and yellow for leftward, monkey-AN; vice-versa for

monkey-SM). In the go-task (Figure 1, top), the FP was extinguished simultaneously with the onset of the colored targets. In the
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wait-task (Figure 1, bottom), the FP stayed on for a variable duration (drawn from an inverted truncated exponential distribution, range

400–1200 ms, mean 900 ms).

Electrophysiology
We recorded spikes from 60 well-isolated single units (29 monkey-AN; 31 monkey-SM) in area LIPv.

54 The sample size for monkey-

AN was limited by a serious illness, leading to euthanasia. Monkey-SM was just ready for recording when New York entered

lockdown owing to the SARS-CoV2 pandemic. We justified as mission-critical the need to obtain a neural data set of power

equivalent to the first monkey. The neural data were analyzed separately for each monkeys, and all of the central findings are

statistically significant for each separately.

MRI was used to localize LIPv and to guide the placement of recording electrodes. We screened for neurons that exhibited spatially

selective persistent activity using amemory-guided saccade task.27 In the screening task, a target is flashed in the periphery while the

monkey fixates on a central spot. Themonkey has to remember the location of the target and execute a saccade to that location when

instructed. The response field (RF) of each neuron was identified as the region of visual space that elicited the highest activity during

the interval between the target flash and the eventual saccade.

During recording experiments, the locations for target presentation were chosen based on the location of the neuronal RF. For

monkey-AN, six locations (including the RF) were chosen, equally spaced on an imaginary circle. On each trial, pairs of locations

2p=3 rad apart were pseudorandomly selected to display the targets. The RF location was oversampled to increase the concentration

of trials from which we could analyze neural data. A similar approach was taken in monkey-SM except that the number of possible

locations were restricted to four and the target pairs were situated p=2 rad apart. Each colored target appeared in the RF on 33% and

28% of the trials for monkey-AN and monkey-SM, respectively. Note that the monkeys were trained to generalize across a larger set

of locations and these spatial restrictions on target locations were implemented during recording sessions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analyses of behavioral data
Bothmonkeys were taught the association between the color of the target and the direction ofmotion using only the strongest motion

strength (±64% coh). We then introduced the next easiest stimulus strength (±32% coh) and continued to addmore coherences until

we reached 0%. To assess the improvement of sensitivity across training sessions, we fit the choice-accuracy, Pcorrect, as a function

of motion strength, jCj, for each session with a Weibull function55 of the following form:

Pcorrect = 0:5+ ð0:5� lÞ
�
1� e

�

�
jCj
a

�b�
(Equation 1)

where l is the lapse rate, b is the shape parameter, and a is the threshold if l = 0.We interpolated from these fits the jCj that supports
75% accuracy and report that as the threshold (e.g., Figure S1).

The quantification of learning rate is from the introduction of the ±32% coh. The rates (e.g., Figure S1) are based on approximate

number of sessions (and trials), because both monkeys experienced interruptions to training. For interruptions lasting more than a

month, we excluded sessions after resumption until the monkey re-established thresholds similar to those prior to the interruption.

This was also the case for monkey-SM when we switched from the go-task to the wait-task.

In Figures 2A, 2B, and 4B, we fit the choices of the monkeys with a logistic model of the following form:

Pright = l+ ð1� 2lÞ½1+ expð � ðb0 + b1CÞ��1
(Equation 2)

where l, b0, b1 are fit parameters. This is also the analytic solution to symmetric diffusion (when l = 0), and thus comparable to the fits

of the models which are constrained to explain both choice and go-RT.

The go-reaction times (go-RT) of monkey-AN were fit with a bounded evidence accumulation model,56 modified to account for

errors at the highest motion strength. In this model, the instantaneous evidence about motion at each time step is assumed to arise

from a normal distribution with variance Dt and mean kðC +C0ÞDt, where C is the signed motion coherence, C0 is bias (expressed in

units of signed coherence), and k is a scaling parameter. The samples of instantaneous evidence are assumed to be independent and

accumulated over time until the decision terminates, which occurs when the accumulated evidence reaches one of the bounds ± B

leading to the choice of one of the targets. Themean go-RT is the expectation of the time taken for the accumulated evidence to reach

the bound plus a constant—the non-decision time tnd comprising all contributions to the go-RT that do not depend on motion

strength/direction and bias (e.g., sensory and motor delays). To account for asymmetric go-RTs in some configurations, we used

two different non-decision times (tbnd and tynd) for blue and yellow target choices respectively.

In this framework, themean go-RT for correct choices (i.e. choices consistent with the sign of the drift rate, k½C +C0� ) is described by

~TxðCjqÞ = B

kðC+C0Þ tanh½kðC + C0ÞB�+ txnd (Equation 3)

where x˛fb; yg and q are the fitted parameters fB; k;C0; t
b
nd; t

y
ndg. The proportion of blue choices is determined by three of these

parameters:
e2 Current Biology 32, 1–12.e1–e5, May 9, 2022
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~PbðCjB; k;C0Þ= ½1+ expð � 2kðC+C0ÞB Þ ��1
(Equation 4)

where ~Pb is the probability of the diffusion process terminating at the bound for blue choices. We first established an estimate of the

bias from a logistic fit to the choices (Equation 2), expressing the bias in units of coherence ðz = b0 =b1Þ. Because the model explains

the go-RT only when the choice is consistent with the sign of the drift rate,57 we used the mean go-RT for positive choices atC+ z> 0

and negative choices for C+ z<0.

Informed by the patterns of error go-RTs observed at the highest coherence (Figure S2B), we attribute the errors at the highest

motion strength (lapse rate, l) to amistaken association between the sign of the terminating bound and its corresponding color-target

(‘‘direction-color confusion’’). For weaker motion strengths the same confusion converts a fraction of correct terminations to erro-

neous color choices and the same fraction of incorrect terminations to correct color choices. We estimated l from Equation 2,

thereby enabling conversion of ~Pb to the observed proportion of blue choices (Pb):

Pb = ~Pb � �
l ~Pb

�
+ l

�
1� ~Pb

�
: (Equation 5)

In our formulation, the trials with direction-color confusion inherit the tnd of themotion decision (not the chosen color) and themean

observed go-RT would include contributions from the trials lost and gained from that process. The fraction of confusion trials for blue

choices at coherence C is

flðCÞ= l
�
1� ~Pb

��
Pb (Equation 6)

and the mean go-RT for blue choices observed to be correct would be

TbðCÞ= ~TbðCÞ½1� flðCÞ �+ ~TyðCÞflðCÞ : (Equation 7)

We used a maximum likelihood procedure to fit this model to the choice and mean go-RTs on the correct (relative to z) choices

(Figure 4A). Table S2 shows the best-fitting model parameters. For each motion coherence, we calculate the average response

time on correct trials (RTcðCÞ), its standard error (scðCÞ), and the number of blue and yellow choices (nbðCÞ and nyðCÞ respectively).
The parameters (F) are fit to maximize the function,bF = argmax

F

�LRT
c ðFÞ + LchoiceðFÞ� (Equation 8)

The first term of the right hand side of Equation 8 is defined as:

LRT
c ðFÞ =

X
C

log½N ðRTcðCÞ; TcðCjFÞ; scðCÞÞ� (Equation 9)

where TcðCjFÞ is the mean go-RT predicted by the model for motion strength C (correct trials only), and Nð,;m;sÞ is the normal

probability-density function with mean m and standard deviation s.

The second term of the right hand of Equation 8 aims to maximize the probability of the observed choices given binomially-distrib-

uted errors,

LchoiceðFÞ =
X
C

log
	
P
�
nbðCÞ;nbðCÞ + nyðCÞ;TbðCjFÞ�
 (Equation 10)

where Pðk;n;pÞ is the binomial probability of observing k blue choices out of n trials, given that blue choices occur with probability p,

which we take to be equal to the model’s predicted proportion of blue choices for parameters F.

We also fit an elaborated version of the bounded evidence accumulation model to include both correct and error trials (Figure S2;

Data S1). In this model, the decision bounds (B) collapse over time:

B =

�
B0 3 expð � aðt � BdelÞÞ if tRBdel

B0 otherwise
(Equation 11)

where B0 is the initial bound height, a is the rate of collapse and Bdel is the delay to onset of collapse. The non-decision time

was assumed constant and equal to tnd. Instead of using Equations 3 and 4, ~TxðCÞ and ~PbðCÞ are obtained by numerical

solution of Fokker-Planck equations.58,59 Again, separate non-decision times were used for decisions terminating at each of

the two bounds and errors at the highest coherence were modeled as ‘direction-color confusion’ using the approach described

above.

We augmented these analyses with psychophysical reverse correlation, to provide an empirical estimate of the epoch in which the

RDM stimulus affected the choice. The motion energy on individual trials (0% coherence only) was computed using spatiotemporal

filters as described in Kiani et al.60 The sign, right minus left or vice versa, was chosen such that positive indicates stimulus evidence

in support of the monkey’s choice on that trial (Figures 2C, 2D, and 4C). To determine the actual duration of motion that had a sig-

nificant influence on choices, we recalculated kernels using different lengths of the random dot movie shown in each trial. We report

the length of time that the stimulus affects choice as the shortest movie-length that accounts for all the statistically significant bins

obtained using the full-length movie.
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Analyses of neural data
For visualization of population average firing rates (Figure 5), spike times from single trials, si = 1.n , were represented as delta func-

tions dðsi �tÞ and convolved with an 80 ms boxcar filter. For each neuron we grouped trials based on what was presented in its RF:

blue target, yellow target or neither.We averaged across trials for each group and determined themaximumof the average responses

across the three groups. The responses on all individual trials were divided by this maximum to obtain normalized firing rates. The

population responses shown in Figure 5 were then computed from these normalized responses using relevant subsets of trials. For

the motion viewing epoch, trials were grouped based on motion direction (0� or 180�) and coherence (High: 64% & 32%; Medium:

16%; Low: 8% & 4%; and 0%). In the target onset and saccade epochs, the grouping was based on which target was shown in the

neuron’s RF (blue or yellow), coherence (same coherence groups as in the motion viewing epoch) and the direction of motion

(preferred vs. nonpreferred). For the majority of neurons, on trials in which a target appeared in the RF, a higher response was

recorded when target appearance was preceded by the associated motion direction. For six neurons in monkey-SM, the non-asso-

ciated direction elicited the higher response and was designated the preferred direction. To visualize the coherence dependent

buildup of activity (insets of Figures 5B, 5C, 5E, and 5F), we detrended the population responses by subtracting the average re-

sponses to the 0% and ±4% coherence conditions. This detrending was done separately for trials with each colored target in the RF.

We pursued several analyses to characterize the neural responses during the epoch of action selection, after the onset of the color-

choice targets. We defined the beginning of this epoch, tV, as the first of three consecutive 40 ms time bins, beginning at least 50 ms

after target onset, in which the average responses associated with correct choices at the strongest motion diverged (p<0.05,

Wilcoxon rank sum test). For monkeys AN and SM tV = 170 and 100ms, respectively. Our analyses focus on early decision formation,

before many decisions would be expected to terminate on the more difficult conditions. For monkey-AN, we set the end of the epoch

as tV + 300 ms or 200 ms before saccade initiation, whichever occurred first. There are no overt terminating events for monkey-SM.

We therefore chose tV + 250 ms.

The effect of signed motion strength on build-up rate (Figure 6) was established as follows. In the epoch defined above, we

computed firing rates in 20 ms bins for each trial. For each neuron we grouped trials based on the target that appeared in the RF

(blue or yellow). We removed the sensory component of the responses for each group by subtracting the average responses to

the 0% and ±4% coherence conditions and computed the buildup rate for each coherence (the slope across bins). We excluded

the ±64% coherence conditions from this analysis because there were too few time bins for monkey-AN, owing to fast go-RT,

and an early plateau in monkey-SM, owing, we suspect, to fast decision terminations. We report the population mean and SE of

the buildup rates and the fit to a linear model regressing these buildup rates against signed coherence in Figure 6.

The analyses summarized in Figure 7 compare the evolution of the variance and autocorrelation of the firing rate during the epoch

of putative decision formation to the expected time course of these statistics under diffusion— if the spikes are associated with latent

firing rates that represent the the sum of independent, identically distributed (iid) random numbers. The theory and algorithm are

described in previous publications.31–33 We used the spike counts in 60 ms bins in the epoch described above. This analysis focused

on trials with the three weakest motion strengths (0%, ±4% and ±8% coh) to exploit the longer duration over which the decision

process unfolds in these trials. The trials are initially grouped by neuron, the 5 unique signed coherences, and the target in the

RF. We used the residuals of responses for each group to remove the contribution of motion strength and direction.

Consider, for the moment, trials from one neuron and one time bin. For each trial, i, we measure the raw spike count and compute

the residual count by removing themean count for all trials of the same combination of signed coherence and the color of the target in

the RF, j,

nij = nij � nj (Equation 12)

The total variance across trials, is

Var½nij�i = Var½nij�i (Equation 13)

because variance is a central moment.We assume the noise component of evidence samples is the same for all themotion strengths.

Therefore the variance across all combinations of signed coherence and the color of the target in the RF is Var½n�;c j. This is the total

variance of the counts in the time bin under consideration. We are interested in the variance of the latent rate that gives rise to the

spike counts on each trial. This is obtained by subtracting off the component of the variance attributed to the variable spike counts

that would be observed even if the latent rate were fixed. For a Poisson point process this would be nj, but we assume the point

process is a generalized renewal61 and is thus approximated by the point process variance,

VPP
j ½nj� = 4nj (Equation 14)

where the Fano factor, 4, is unknown. Note that the point process variance depends on the signed coherence. From the law of total

variance, subtraction of this component from the total variance leaves the variance of the conditional expectation, VarCEhVar½EðnÞ�.
There is a bookkeeping step that respects the dependence of VPP on signed coherence and neuron (see previous citations), but using

the residuals, we can obtain an estimate of the VarCE across all neurons at one time bin. Dividing by 0:062 yields the variance of the

latent rates (spikes2=s2) across trials (in the time bin under consideration), although it depends on the unknown 4. For unbounded

diffusion the VarCE should increase linearly as a function of time, because it is a cumulative sum of iid random numbers.
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Diffusion also specifies the autocorrelation, between the cumulative sum of the first i samples and the cumulative sum of the first

jRi values:

rij =

ffiffi
i

j

s
(Equation 15)

This implies a decay of correlation as function of lag, j� i, and an increase in correlation for fixed lag, as a function of time. We

obtain the estimates, rij, from data by forming the autocovariance matrix on residuals from all neurons. Note that the CovPP = 0

for isj, because by construction, given the rate in time bin j the stochastic realization of spike count does not depend on the rate

or realization of spike count in bin i. Therefore the covariance of the conditional expectation (CovCE) is the raw covariance for is
j. Its diagonal (i = j) is the VarCE. This matrix is normalized in the usual way to produce a correlation matrix of conditional expectation

(CorCE).

The CorCE depends on the VarCE which depends on 4, which is unknown. We chose the value that minimized the sum of squares:Xn�1

i = 1

Xn

j = 2

½ZðrijÞ � ZðrijÞ�2 (Equation 16)

where Z denotes standardization (Fisher-z transform).

The values of the variance plotted in Figures 7A and 7F are VarCE, using the fitted 4. The standard errors are estimated from a

bootstrap procedure62 in which trials were sampled (with replacement) while maintaining their grouping (same neuron, dot direction,

coherence and color of target in RF). We also performed the same analysis using neural responses in the epoch between 190 to

550 ms after RDM onset (Figure S5).
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